999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

血液透析膜在抗凝血改性方面的研究進展

2025-01-22 00:00:00王宣李澤華史潤婕李田田王若琳牛春梅
河北科技大學學報 2025年1期

摘 要:透析膜是血液透析器最重要的組成部分,其性能取決于清除有毒溶質的可行性和生物相容性。但是當膜材料與血液接觸時,血漿蛋白會快速吸附在膜表面,并與血小板上的糖蛋白受體結合,導致血小板活化、凝血級聯反應和補體激活,從而形成凝血及血栓,嚴重威脅患者的健康和生命安全。為了賦予血液透析膜良好的抗凝血性能,需要針對性地對膜材料進行改性,如表面微觀結構、表面電荷和潤濕性等,以保持其在血液相容性方面的可控性。在總結了膜的改性技術的基礎上,介紹了現階段血液透析膜面臨的挑戰與改進策略,指出當前抗凝血改性策略大多存在穩定性較差、易脫落的問題,且改性過程通常涉及到有機溶劑和化學藥品的使用。對透析膜抗凝血改性技術未來的發展方向進行了展望:1)開發智能響應材料,實現動態的抗凝血功能;2)構建仿生膜表面,減弱人體的排異反應;3)設計動態和可再生表面,使其在使用過程中能夠自我修復或再生;4)綠色化改性方法,既能實現高效的抗凝血改性,又能減少生產過程中對環境的污染。

關鍵詞:功能高分子材料;血液透析膜;抗凝血;血液相容性;膜表面功能化

中圖分類號:324文獻標識碼:A

DOI: 10.73/hbkd.202yx01004

收稿日期:2024-03-24;修回日期:2024-08-02;責任編輯:胡姝洋

基金項目:國家自然科學基金(2230808);河北省自然科學基金(2020208083);2024年河北省碩士在讀研究生創新能力培養資助項目(CXSS2024081)

第一作者簡介:王宣(1999—),女,河北廊坊人,碩士研究生,主要從事血液透析膜結構及表/界面功能調控方面的研究。

通信作者:李田田,博士。E-mail:litiantian669@163.com

Research progress on modification of hemodialysis

membranes with anticoagulant properties

ANG Xuan , LI ehua , SHI Runjie , LI iantian , ANG Ruolin , NIU Chunmei

(1.School of Materials Science and Engineering, Hebei University of Science and echnology,

Shijiazhuang, Hebei 00018, China;

2.Hebei Key Laboratory of Flexible Functional Materials, Shijiazhuang, Hebei 00018, China)

Abstract:he dialysis membrane is the most important component of hemodialyzer, and its performance depends on the feasibility and biocompatibility of removing toxic solutes. However, when the membrane material is in contact with blood directly, plasma proteins will quickly adsorb on the surface of the membrane and bind to the glycoprotein receptors on platelets, resulting in platelet activation, coagulation cascade and complement activation. his will inevitably induce coagulation and thrombosis, threatening the health and life safety of patients." In order to confer favorable anticoagulant properties upon hemodialysis membranes, it is imperative to modify the membrane materials, including surface microstructure, surface charge and wettability, thereby ensuring their controllability in terms of blood compatibility. he modification technology of the membrane was summarized. he challenges and improvement strategies faced by hemodialysis membranes in the current stage of anal dilation was elaborated. It was clarified that most of the current anticoagulant modification strategies have the problem of poor stability and easy detachment, while the modification process usually involves the usage of organic solvents and chemicals. his review also puts forward prospect on the developing direction of anticoagulant modification technology for dialysis membranes: 1) developing intelligent responsive materials to achieve dynamic anticoagulant functions; 2) constructing a biomimetic membrane surface to reduce the body's rejection reaction; 3) designing dynamic and renewable surfaces that can self-recover or regenerate; 4) carrying out green modification methods which can not only achieve efficient anticoagulant modification but also reduce environmental pollution.

Keywords: functional polymer material; hemodialysis membrane; anticoagulation; blood compatibility; membrane surface functionalization

透析膜作為分離介質,在血液透析過程中,借助膜兩側血液與透析液之間的濃度梯度、滲透壓梯度、壓力梯度等作用,促進患者血液中尿素、肌肝、尿酸等中小分子毒素向透析液擴散,同時為了保證患者機體電解質和酸堿度平衡,還要通過透析液向血液中補充人體所需離子。透析原理如圖1所示。因此,血液透析治療的效果與血液透析膜的性能有著極大的關系[1]。

根據膜材料的發展階段,透析膜可分為纖維素膜和合成膜。纖維素膜是第1代血液透析膜,它的膜壁極薄(壁厚≤1 μm),通透性好,有利于擴散運輸,且成本低,在早期的血液透析中廣泛應用,但其會激活補體和白細胞,誘發炎癥反應,被稱為生物不相容性透析膜[3-4]。纖維素膜包括再生纖維素膜和仿生纖維素膜,該類膜具有良好的親水性與透水性,清除小分子毒素的能力強,但由于其聚合物鏈中的羥基(—OH)在與血液接觸時會激活補體、中性粒細胞超氧化物及細胞因子,從而導致多種心血管疾病[1,-6]。之后,研究者們發現對纖維素膜表面的—OH進行化學修飾,可以有效減弱其激活補體作用,提升生物相容性,如血仿膜、醋酸纖維素(CA)膜[4]。第2代血液透析膜為合成膜,包括聚丙烯腈(PAN)、聚砜(PSf)、聚醚砜(PES)等[7-8],它們組成均勻、結構對稱。其中,PAN膜不僅對中等分子質量物質的去除能力更強,同時還具有優良的耐有機溶劑特性[9]。聚甲基丙烯酸甲酯(PMMA)表面帶有較強的負電荷,對β2-微球蛋白等其他相對分子質量超過 000 Da的分子有較強吸附清除能力[9],其機械強度與化學穩定性高,耐清洗性較好,宜重復使用。但由于其固有的疏水性,在膜與血液接觸時會發生溶血、凝血現象,導致蛋白質(血清蛋白質)在膜表面和孔內吸附,使滲透通量降低[10-11]。在臨床治療中,如果使用的透析膜材料能在較短時間內達到較好的透析效果,可大大提高透析效率,減輕患者痛苦。高性能血液透析膜需有良好的血液相容性,在具有優異水滲透性的同時保持穩定的溶質截留性,在不同跨膜壓力下具有足夠的機械強度,制備、改性工藝簡單易操作,成本低廉。

1 膜材料-血液界面相互作用

血液是一種復雜的生物液體,包含4 00余種蛋白質和肽,以及參與復雜生物現象的細胞[12]。臨床中使用的所有與血液接觸的材料都會引發不良的材料-血液相互作用,如血栓和炎癥[13]。目前,改善材料-血液相互作用的2個常見方法是設計生物惰性表面和生物活性表面[14]。但這2種方法只在短期內有效果,無法實現透析膜材料真正長期穩定的血液相容性。凝血是指血液由流動的液體狀態變成不能流動的凝膠狀態的過程,是生理性止血的重要環節,產生凝血的途徑有內源性凝血和外源性凝血2種[1-16]。

在血液與膜材料接觸的短時間內,首先發生蛋白質分子在透析膜材料表面的競爭性吸附,吸附蛋白質的數量和種類決定了透析膜血液相容性的高低[17]。在凝血過程中,會發生蛋白質吸附和血小板黏附,一般認為,材料表面黏附的血小板越多、形態變化越大、釋放的活性顆粒物質越多,材料表面越容易發生凝血現象[18-19]。血小板被膜材料激活后,可以活化血液中的其他細胞,活性物質隨之被釋放,這些活性物質也將參與并介導透析膜材料引發的各種生物學反應[20],接著發生凝血級聯反應,使纖維蛋白原聚集,形成纖維蛋白凝膠[16],最終形成血栓。被活化的細胞是引發膜材料-血液不良相互作用的關鍵[12]。如圖2所示,總的來說,血栓的形成大致為以下4步:1)蛋白質吸附;2)血小板黏附和活化;3)凝血級聯反應;4)血栓形成。

2 "提高血液透析膜抗凝血性能的方法

血液透析過程中使用的透析膜材料在物理、化學和生物特性上與人體血液組織成分明顯不同,這會導致不良的(甚至是災難性的)膜材料-血液相互作用[12]。開發新型透析膜材料的研究重點是:減少膜材料-血液之間的相互作用,提高膜材料的抗凝血性和血液相容性;增強膜的滲透性和對目標溶質的選擇分離性能[21-23]。由于膜的性質與血液成分的吸附、流變動力學等有著密切的關系[24],研究者們可以通過調控膜表面的穩定性、均勻性、親水性、粗糙度、孔隙率、帶電性以及引入功能性基團等策略,來提高膜的抗凝血性。目前研究人員開發了多種改性方法,包括共混親水性添加劑[26-27]、層層自組裝[27]、接枝親水性聚合物刷[28]、制備水合層[29]、水凝膠[30]、混合基質膜[31-32]、輻射誘導接枝[33-34]等來提高透析膜的血液相容性,或通過接枝具有抗凝血功能的官能團來實現對血液透析膜的抗凝改性,如磺酸基(—SO3H)和羧基(—COOH),它們可以抑制凝血酶的活性,增強抗凝血酶活性,進而抑制血栓的形成。還可以在膜材料表面引入肝素或肝素衍生物(類肝素),該類物質能夠減少血液中的蛋白質吸附、血小板黏附和聚集,實現高分子材料表面的肝素化改性,減弱血液與透析膜之間不良的相互作用[24]。

2.1 共混改性

共混改性是將聚合物與不同的材料(聚合物或無機納米顆粒等)混合在一起達到膜改性的目的[3]。該方法通常采用非溶劑誘導相分離法制膜,親水或兩親性的高分子添加劑與基體高分子材料通過溶液共混后,添加劑中的親水部分會在凝固浴中遷移至膜表面,從而增加膜表面的親水性,提高抗蛋白質吸附的能力。該方法操作簡單、成本低廉,易于實現大規模生產,已成為目前制造具有特定性能透析膜材料的一種簡單且通用的策略。

XIX-RODRIGUE等[36]將聚乳酸(PLA)與兩親性嵌段共聚物共混,制備了具有血液相容性的新型PLA/兩親性共聚物共混膜,其中兩親性共聚物改善了膜的親水性和防污性能,提高了膜的純水通量和通量恢復率,并且在中小分子毒素的對流傳輸和大分子蛋白質的高保留率之間也取得了很好的平衡,但添加劑可能影響膜的機械性能和穩定性,進而影響其在實際應用過程中的使用壽命。ANG等[37]將季銨化兩性離子聚合物通過共混法添加到PES基膜中,改性膜的表面粗糙度相對較低,改善了膜血液相容性。LIU等[38]采用浸沒沉淀相轉化法制備了沃拉帕沙(Vorapaxar)改性PSf膜(VMPSf),水接觸角顯著降低,親水性得到明顯改善,膜表面黏附的血小板數量明顯減少,抑制了血小板活化,減少了纖維蛋白原吸附。LI等[39]合成了帶有陰離子的超親水性聚(2-丙烯酰胺-2-甲基丙磺酸)(PAMPS)聚合物,將其與PES混合,通過陽離子聚電解質(PHM)誘導的相分離過程制備了新型雙作用膜。改性膜具有良好的親水性,可調節抗菌和抗凝血性能,同時可以保持良好的選擇滲透性。REN等[40]通過縮合聚合與親核取代反應合成了基于甲氧基聚乙二醇與聚醚砜(mPEG-b-PES-b-mPEG)的嵌段共聚物(CP),該血液透析膜的血液相容性和對毒素的篩分能力得到了明顯提升。HELMECKE等[41]將聚醚砜/聚乙烯基吡咯烷酮(PES/PVP)膜與聚苯乙烯-馬來酸酐(SMA)共聚物混合,通過共價鍵將胺基錨定在膜表面,并應用于后續抗凝膜的改性與肝素修飾,最終達到增加膜抗凝血性與血液相容性的目的。FAHMI等[42]將氧化石墨烯(GO)添加到PES混合基質膜(MMMs)中,以改善血液透析膜的性能。GO的加入提高了MMMs的親水性,在對肌酐進行截留時的通量和清除率分別為2.94 L/(m2·h)和78.3%。CA血液透析膜已廣泛應用于生物醫學領域,特別是血液透析應用,但CA膜的主要問題是選擇性和血液相容性較差。AHAR等[26]以聚乙烯醇(PVA)和聚乙二醇(PEG)為添加劑對CA膜進行過濾性能和生物相容性改性,改性膜的純水通量高達42.48 L/(m2·h),對牛血清白蛋白(SA)排斥率高達9%,延長了凝血時間,膜表面形成的血栓量減少。AHIRA等[43]將合成的磺化聚醚砜(SPES)、CA與PES共混,制備SPES/PES、CA/PES共混膜,改性膜的抗凝血特性以及細胞相容性均優于PES基膜,制備示意圖如圖3所示。KALUGIN等[44]通過提高PES膜的疏水性來增強其血液相容性,首先對二氧化硅納米顆粒進行表面改性,再通過相轉化技術在PES中摻入改性二氧化硅納米顆粒以制備改性PES平板膜。該策略顯著提高了PES膜的血液相容性,抗凝血能力增強,并且對于炎癥反應也具有一定的調控作用。FENG等[4]將PES與聚乙烯胺(PVAm)改性羧基碳納米管(mCNs)和檸檬酸鹽基聚八亞甲基-檸檬酸鹽(POC)預聚物共混,制備了具有自凝性能的PES復合膜,其中POC預聚合物通過螯合血液Ca2+和對內在凝血因子的失活作用來提供抗凝血性能,復合膜具有理想的自凝能力。FU等[46]以阿哌沙班為FXa抑制劑對PES膜進行改性,改性后的膜對蛋白吸附減少,抑制了內在、外在和常見凝血途徑的激活,改性膜具有更好的抗凝性能。LIU等[47]采用相還原法制備了吸附擴散膜,由單寧酸(A)、PEI和Fe(Ⅱ)/Cu(Ⅱ)雙金屬離子組成的吸附劑與血液透析膜之間產生協同作用,膜表面均勻分布的Cu(Ⅱ)位點可以將S-亞硝基硫醇轉化為一氧化氮來促進血液相容性,從而抑制血小板活化,增強膜抗凝血性。

通過引入添加劑與聚合物共混的方法可以擴大膜材料的生產范圍,調節膜的基本結構、親水性和孔徑大小,以制備具有各種特性的聚合物。王旭[48]以PPES為聚合物、DMAc為溶劑、PVP為添加劑,采用干濕相轉化法制備于用血液透析的PPES中空纖維膜,該膜具有優異的滲透性與更好的蛋白質防污性能,與PES膜相比,PPES血液透析膜對尿素和溶菌酶的清除率都有所增加。劉燕妮等[49]通過非溶劑誘導相分離技術制備了PLA/GO復合膜,隨著GO含量的增加,膜的孔隙率、親水性和水通量呈現先增大后減小的趨勢。GO還可以提高PLA膜的熱穩定性、拉伸性能以及血液相容性。祁旭超[0]以PSf為基膜材料、RES為改性劑、PEG為致孔劑、DMAc為反應溶劑,采用浸沒沉淀相轉化法制得抗氧化PSf/RES共混改性膜,與純PSf膜相比,改性膜的親水性及滲透分離性能顯著提升,對DPPH和AS+自由基的清除率分別達到80%和98%以上,抗氧化性得到極大提高,具有良好的血液相容性。

2.2 表面涂覆

表面涂覆是利用非共價鍵(弱范德華力或氫鍵)將具有特定功能性的生物高分子固定在材料表面的改性方法[1-2],該方法可通過浸涂、旋轉涂覆、物理吸附等方式進行[3],是一種簡單、經濟、環保的表面改性技術。

臨床中在解決凝血問題時,使用最多的抗凝劑就是肝素,這是因為肝素帶有的負電荷可以阻止蛋白質吸附,減少血栓生成和凝血現象的發生[17]。—COOH、—SO3H、—OH、硫酸根(SO2-4)等基團在血液中與肝素的生物活性相似,可以絡合凝血因子,故在合成的聚合物材料中引入此類官能團可延長凝血時間,提高膜材料的抗凝血能力[4]。ANG等制備了一種新型聚(4-甲基-1-戊烯)/聚丙烯(PMP/PP)薄膜復合膜(FC),其抗凝涂層由聚(4-苯乙烯磺酸鈉)和交聯PVA組成(見圖4)。其中,聚(4-苯乙烯磺酸鈉)含有抑制凝血因子(FVⅢ和FXⅡ)的—SO3H,交聯PVA含有大量—OH,抑制了蛋白質吸附,增加了抗凝血涂層的穩定性,膜的親水性也得到了進一步的提升。A是一種廣泛存在于植物中的多酚,在制革工業和生物醫學領域應用廣泛[6]。多酚具有多重作用,例如A及其衍生物具有抗氧化特性,可用于食品包裝和血液凈化[7-8],又由于其強大的黏附性能,可以黏附在各種膜基材上[6]。CHEN等[9]將A涂層

和環狀聚(2-乙基-2-惡唑啉)(PEtOx)固定在PES膜表面,同時,基于堿基互補配對作用,部分水解的環狀聚PEtOx具有額外的錨定位點,可以將肝素涂層固定到血液透析膜表面。改性后膜的血清抗氧化能力大大提高,血液相容性以及抗凝血性能也得到了顯著改善。

EI等[60]采用非溶劑誘導相分離和表面涂覆法制備了高蛋白保留率的PES膜,A和α-硫辛酸(α-LA)組成水合層,形成光滑的腎小球內皮樣涂層。α-LA在膜表面形成交聯網絡,可以控制膜孔隙的大小。通過Michael加成反應和烯醇點擊反應將α-LA固定在膜表面,改性后的膜孔具有良好的親水性、滲透性和蛋白質保留性。之后,研究人員還模擬腎小球內皮細胞化表面,將A、對乙烯基苯磺酸鈉(SVS)和α-LA引入到PES膜上,成功制備出富含多陰離子和類肝素基團的光滑抗凝涂層,改性膜具有較好的親水性(水接觸角為29.7°)、尿素清除率(96.%)和較高的SA蛋白保留率(99.7%)[7]。ROSE等[61]在商業透析膜上先涂覆一層殼聚糖(CS)涂層,隨后對膜表面進行肝素化處理,該策略僅需一步即可完成,簡單便捷。改性后的膜表面表現出明顯的電荷差異,純水滲透量也顯著增加,此外,改性膜有較強的防污性能和優異的血液相容性。ENG等[62]通過聚(ε-己內酯)與二氫乙烷二異氰酸酯的直接擴鏈反應,制備了含有有序硬鏈段的聚(酯-氨基甲酸乙酯)(PEU),并通過溶劑蒸發法制備了PEU膜,再將交聯硅樹脂(CLS)層結合到PEU膜表面。制備的改性膜表現出優異的拉伸性能和血液相容性。GO表面富含豐富的—COOH、—OH和環氧基團(—CH2OCH2—),可以為膜表面提供大量的負電荷,提高膜的親水性,增強透析膜的血液相容性[63]。KALEEKKAL[64]首先通過聚多巴胺的黏附作用將肝素錨定在GO納米片上,制備出功能化氧化石墨烯(f-GO),再將f-GO引入到聚醚酰亞胺膜上,f-GO的加入抑制了血漿中的蛋白質吸附,減弱了血小板的活化作用,降低了血小板黏附量,延長了凝血時間,減少了凝血酶的產生,并且任何補體途徑都不會被激活,制備的膜材料穩定性較好,具有優異的血液相容性。張迪[6]將沒食子酸(gallic acid,GA)涂覆在PVDF血液透析膜表面,形成GA活性涂層,并以該涂層為二次功能化位點,通過氫鍵和靜電相互作用在膜表面上沉積了磺化i3C2x。磺化i3C2x能增強膜表面的抗蛋白吸附能力,改性血液透析膜具有高效的溶菌酶清除能力,并且能高效去除中、小分子毒素。

2.3 化學接枝

化學接枝技術通過共價鍵將功能性基團固定在膜表面,使基底與接枝物結合,進而對膜表面進行不同的功能性修飾,使其具有高密度和更持久的化學穩定性,從而減少材料與血液成分相互作用。通過接枝親水性基團來改善血液相容性,可以防止血漿蛋白吸附和血小板的黏附[4]。該方法包括偶聯接枝、化學或臭氧引發接枝等。相比于物理涂覆,化學接枝法更加穩定,在生理環境中能保持較長時間。

YAN等[66]為了改善PSf膜的血液相容性,將4-(氯甲基)苯甲酸(CMA)和磺化羥丙基殼聚糖(SHPCS)接枝到PSf膜表面。首先通過Friedel-Crafts烷基化反應將CMA接枝到PSf膜表面,再通過酯化反應將SHPCS接枝到APSf膜表面。改性后的SHPCS-APSf膜的親水性得到顯著改善,具有優異的抗凝血性。HENG等[67]將親水性離子液體(IL)接枝到PES膜上,制備了中空纖維膜(PES-g-IL HFMs)。改性膜比未經改性的PES-HFMs孔隙率更高,蛋白質吸附量和血小板黏附量更少,凝血時間更長,親水性更好。LI等[68]借助多巴胺的黏附功能,將肝素接枝到PU膜上,制備出功能化PU/PDA-Hep膜。改性后的膜顯示出更好的親水性和穩定性,并且肝素聚集形成的納米顆粒增加了PU膜的表面粗糙度,對牛血清白蛋白和纖維蛋白表現出良好的抗黏連性,血小板黏附量顯著減少。HANG等[69]采用化學氣相沉積(iCVD)法一步雜化接枝富羧基聚甲基丙烯酸(pMAA)涂層,在PLA透析膜上制備了類肝素涂層。接枝的pMAA上含有豐富的—COOH,親水性強,在水溶液中可以形成水化層,進而有效抑制蛋白質和血小板黏附,延長了凝血時間,改性膜具有良好的血液相容性。衣康酸(IA)是一種含有2個羧基的不飽和羧酸。由于其無毒性和良好的生物相容性,被廣泛應用于生物醫學和制藥領域。LIU等[70]將小分子IA接枝在PVC血漿分離膜上,制備了一種新型抗凝分離雙功能聚氯乙烯等離子體分離膜,IA可以結合血液中的Ca2+,延長凝血時間,改性后的膜具有良好的血液相容性,其示意圖如圖所示。

共混、表面涂覆及化學接枝法均可以有效改善血液透析膜的抗凝血特性,但通常化學改性方法的工藝較為復雜,在改性過程中往往會不可避免地使用有機溶劑、引發劑和催化劑,這些添加劑在后處理中不易完全去除,無法完全保障膜材料的安全性。研究發現,60Co放射源產生的γ射線穿透力極強,可利用輻射引發接枝聚合反應對聚合物進行親水性或抗凝血改性。相比傳統的化學法,輻射接枝反應可以在不改變膜基體結構的情況下提高其表面性能,該過程比較便捷,適合制備對產物純度要求高的生物材料[71]。ANG等[34]通過γ射線輻射將對苯乙烯磺酸鈉(SSS)、丙烯酸(AA)和N-乙烯基吡咯烷酮(NVP)聚合,在均相體系中制備出PES衍生物(PES-g-SSS、PES-g-NVP、PES-g-AA/SSS、PES-g-NVP/SSS和PES-g-AA/NVP/SSS)。通過相轉化法直接將此類衍生物制備成平板膜。與PES基膜相比,所有改性膜的親水性提高、蛋白質吸附和血小板黏附量降低。蔣邵平等[71]利用γ射線在PES膜表面引發輻射接枝聚合反應,將SSS接枝到膜表面,從而提高膜親水性,增加膜表面電負性,改性后的膜材料抗凝血性能得到了明顯提升。此外,采用輻射接枝的方法對膜材料的表面進行改性,對膜的孔隙率與表面形貌影響較小,接枝均勻性好,產物純度高。以上研究表明,輻射誘導接枝法在血液透析膜材料的改性領域有著極大的應用潛力。

2.4 層層自組裝技術

層層自組裝技術(LL)是20世紀90年代快速發展起來的,主要是利用大分子之間的弱相互作用在材料基底表面進行交替沉積組裝。該技術所需設備簡單、操作方便、條件溫和、對基底沒有特殊限制、成膜厚度可控、可自由選擇合適的成膜動力,且成膜后的材料具有較好的機械穩定性。

PENG等[72]通過在CA膜表面逐層沉積CS和水溶性類肝素多糖(硫酸化的Cantarellus cibarius多糖,SCP),改善了CA膜的血液相容性、抗菌和抗氧化活性。YU等[73]通過逐層組裝,用硫酸化山藥多糖(SCYP)和CS組成的類肝素化多糖多層膜修飾PLA膜表面,發現改性PLA膜能有效抵抗蛋白質吸附、抑制血小板黏附、延長凝血時間、防止補體活化、降低溶血率。ANG等[74]通過自組裝方法原位沉積沒食子酸-i3C2x MXene(GA-MXene)n層,發現(GA-MXene)n血液透析膜具有高度互連的復合層壓板,孔徑可調,具有優異的抗凝性能和細胞相容性,其示意圖如圖6所示。HE等[7]利用Marangoni作用力將

Nb2Cx MXene緊密地堆疊在聚偏氟乙烯(PVDF)基底膜上,減輕了氧化應激。改性后的血液透析膜對中小毒血癥毒素具有較高的清除率(溶菌酶72.6%、尿素90.0%),改善了膜的親水性,阻礙了蛋白質的吸附,具有良好的血液相容性和細胞相容性,但在實際應用過程中應考慮其生產成本問題。

2. 多種技術混合改性法

在血液透析膜抗凝血性能的提升方面,將物理化學方法組合對透析膜進行抗凝血改性也取得了顯著進展。通過結合多種改性技術,可以實現透析膜的多重改性效果。XIAO等[76]將一種含有碳點的類肝素凝膠(CDs)用于修飾聚醚砜血液透析膜。首先將CDs與過硫酸銨、對苯乙烯磺酸鈉和N, N-亞甲基雙丙烯酰胺單體混合,再通過原位聚合修飾到血液透析膜表面。所制備的雜化水凝膠對血液透析膜具有較高的自由基清除率,抗凝時間延長。姜智旭等[77]利用堿處理PVDF方法,將AA自由基共聚到PVDF粉末上,然后利用相轉化法制備PVDF-g-PAA平板膜,在EDC等催化劑的作用下,利用膜表面的—COOH,將[X]L-精氨酸(ARG)共價連接在膜表面,制備了PVDF-ARG平板膜,改性后的PVDF膜具有良好的抗凝性能。田懿等[78]通過IPs法制備PMP中空纖維膜,并以此作為基材通過靜電作用力驅動的層層自組裝在表面引入PEI和肝素組成的正負電荷改性層,改性層極大地提高了PMP中空纖維復合膜的氣體傳輸性能和血液相容性。XU等[79]采用一鍋原位交聯聚合和相分離相結合的方法,制備了具有水凝膠包埋結構的PES膜,并將A接枝在膜表面。該膜具有良好的血液相容性,抑制了內在凝血途徑,對血細胞和補體系統幾乎沒有影響,對尿素和溶菌酶具有超高的清除率。不同改性方法對血液透析膜的性能對比如表1所示。

3 "問題與展望

近年來,高分子膜材料在抗凝血改性研究方面取得了顯著進展,其性能得到極大改善。但目前人們對于透析膜材料的改性研究還處于基礎階段,仍存在諸多問題亟待解決。

3.1 問題分析

1)目前,研究人員對血液與膜材料之間產生生理反應的潛在機制以及材料表面物理化學特性和內部結構特征對凝血與炎癥等反應過程的影響不夠明晰,還需對膜材料的安全性和有效性進行更深入、更高質量的臨床研究。

2)大多數物理改性法是直接的、經濟的、環保的,但物理法改性的膜表面在生理環境中穩定性較差,易脫落。共混改性法操作簡便、成本相對較低,但改性劑分散性、與基體材料的相容性等問題使該方法具有一定局限性。

3)采用化學方法對膜材料進行改性通常涉及有機溶劑和化學藥品的使用,對環境不友好,并且后處理步驟復雜。等離子體、紫外線和高能輻射對聚合物膜進行接枝和表面改性技術較為復雜,高成本也限制了其在工業化生產中的使用。

3.2 研究展望

血液透析膜的抗凝血改性技術可在智能響應型材料、仿生膜表面、動態和可再生表面以及綠色化改性方法等方向有所突破。

1)研制可根據外界環境(如pH值、溫度)變化的智能響應材料,進而改變透析膜表面特性,實現動態的抗凝血功能。例如,溫度響應型材料在體溫下可以表現出良好的抗凝血性能,而在較低溫度下則容易清洗和再生。或者根據血液的pH值變化調整表面特性,從而動態調節抗凝血性能。

2)可借助仿生策略,設計出更多與人體內皮血管細胞結構功能相似的新型膜材料,構建具有血液相容性等多種特性的表面,減弱人體的排異反應,能長期穩定、安全、有效地使患者壽命得到更大程度的延長。

3)開發動態和可再生的膜表面,使其在使用過程中能夠自我修復或再生。例如,自愈合材料,當膜表面受到損傷時,能夠通過化學或物理作用進行自修復;可再生涂層,當膜被污染后可以容易地去除并重新生成新的保護層,延長膜的使用壽命,降低生產成本。

4)未來的改性技術應該更多地依賴綠色環保的水性溶劑,減少有機溶劑的使用。既能實現高效的抗凝血改性,又能減少生產過程中對環境的污染。

參考文獻/References:

[1] 劉強,蘇白海.血液透析器膜材料研究現狀及展望[J].華西醫學,2014,29(9):1787-1790.

LIU Qiang,SU aihai.Research status and prospect of hemodialyzer membrane materials[J].est China Medical Journal,2014,29(9):1787-1790.

RONCO C,CLARK "R.Haemodialysis membranes[J].Nature Reviews Nephrology,2018,14(6):394-410.

[3] LYSAGH M J.Hemodialysis membranes in transition[J].Contributions to Nephrology,1988,61:1-17.

[4] 黃力,葛永純.血液透析中的血液相容性[J].腎臟病與透析腎移植雜志,2023,32():481-486.

HUANG Li,GE Yongchun.Hemocompatibility in haemodialysis[J].Chinese Journal of Nephrology,Dialysis amp; ransplantation,2023,32():481-486.

俞學敏,朱麗靜,高愛林,等.血液透析膜的制備改性及組件設計[J].膜科學與技術,201,3(4):110-122.

YU Xuemin,HU Lijing,GAO Ailin,et al.he preparation and modification of hemodialysis membrane materials and hemodialyzer[J].Membrane Science and echnology,201,3(4):110-122.

[6] EDUOK U,ADELRASOUL A,SHOKER A,et al.Recent developments, current challenges and future perspectives on cellulosic hemodialysis membranes for highly efficient clearance of uremic toxins[J].Materials oday Communications,2021.DOI: 10.1016/j.mtcomm.2021.102183.

[7] CHEN Fengtao,SHI Xingxing,CHEN Xiaobing,et al.Preparation and characterization of amphiphilic copolymer PVDF-g-PMAS and its application in improving hydrophilicity and protein fouling resistance of PVDF membrane[J].Applied Surface Science,2018,427(Part A):787-797.

[8] ENGANI-LU P,CONVERSE E,CEE P,et al.Self-assembling zwitterionic copolymers as membrane selective layers with excellent fouling resistance: Effect of zwitterion chemistry[J].ACS Applied Materials amp; Interfaces,2017,9(24):2089-20872.

[9] 于茜,周建輝,趙小淋,等.血液凈化膜材料的臨床發展[J].中華腎病研究電子雜志,2021,10(2):103-108.

YU Qian,HOU Jianhui,HAO Xiaolin,et al.Clinical development of blood purification membrane materials[J].Chinese" Journal of Nephrology,2021,10(2):103-108.

[10]HAGHDOOS F,AHRAMI S H,ARIN J,et al.Preparation and characterization of electrospun polyethersulfone/polyvinylpyrrolidone-zeolite core:Shell composite nanofibers for creatinine adsorption[J].Separation and Purification echnology,2021.DOI: 10.1016/j.seppur.2020.117881.

[11]夏澤坤.高生物相容性聚醚砜中空纖維血液透析膜的研究[D].天津:天津工業大學,2007.

XIA ekun.Research of High iocompatibility Polyethersulfone(PES) Hollow Fiber Hemodialysis Membrane[D].ianjin:ianjin Polytechnic University,2007.

[12]HEDAYAI M,NEUFELD M J,REYNOLDS M M,et al.he quest for blood-compatible materials: Recent advances and future technologies[J].Materials Science and Engineering R: Reports,2019,138:118-12.

[13]ANDERSON J M,RODRIGUE A,CHANG D .Foreign body reaction to biomaterials[J].Seminars in Immunology,2008,20(2):86-100.

[14]VLCEK J R,HEDAYAI M,MELVIN A C,et al.lood-compatible materials:Vascular endothelium-mimetic surfaces that mitigate multiple cell-material interactions[J].Advanced Healthcare Materials,2021.DOI: 10.1002/adhm.202001748.

[1]高文卿,李彤,于美麗,等.血液透析膜材料的改進及抗凝血特性[J].生物醫學工程與臨床,2018,22(6): 713-716.

GAO enqing,LI ong,YU Meili,et al.Improvement of hemodialysis membrane materials and anticoagulant properties[J].iomedical Engineering and Clinical Medicine,2018,22(6):713-716.

[16]繆翠娥,李鵬飛,王麗娟,等.血液相容性改善策略與研究進展[J].高分子通報,2021(7):1-12.

MIAO Cuie,LI Pengfei,ANG Lijuan,et al.A review on improvement and devolvement of blood compatibility[J].Chinese Polymer ulletin,2021(7):1-12.

[17]孟潔,許海燕.生物材料與血液相互作用過程的研究進展[J].生物醫學工程學雜志,200,22(6):1271-1274.

MENG Jie,XU Haiyan.Developments in understanding of interactions between blood and biomaterials at molecular and cellular levels[J].Journal of iomedical Engineering,200,22(6):1271-1274.

[18]KANNO M,KAAKAMI H,NAGAOKA S,et al.iocompatibility of fluorinated polyimide[J].Journal of iomedical Materials Research,2002,60(1):3-60.

[19]SEFON M V,SAYER A,GORE M,et al.Does surface chemistry affect thrombogenicity of surface modified polymers?[J].Journal of iomedial Materials Research,2001,(4):447-49.

[20]CENNI E,GRANCHI D,VERRI E,et al.CD62,thromboxane 2,and beta-thromboglobulin:A comparison between different markers of platelet activation after contact with biomaterials[J].Journal of iomedial Materials Research,1997,36(3):289-294.

[21]ADELRASOUL A,SHOKER A.Induced hemocompatibility of polyethersulfone (PES) hemodialysis membrane using polyvinylpyrrolidone:Investigation on human serum fibrinogen adsorption and inflammatory biomarkers released[J].Chemical Engineering Research and Design,2022,177:61-624.

[22]KOCHKODAN V,JOHNSON D J,HILAL N.Polymeric membranes: Surface modification for minimizing (bio)colloidal fouling[J].Advances in Colloid and Interface Science,2014,206:116-140.

[23]ULRICH M.Advanced functional polymer membranes[J].Polymer,2006,47(7):2217-2262.

[24]李雅坤,黑飛龍.膜式人工肺中空纖維膜材料的改善及發展新方向[J].中國組織工程研究,2022,26(16):2608-2612.

LI Yakun,HEI Feilong.Improvement and new development of hollow fiber membrane materials for membrane artificial lung[J].Chinese Journal of issue Engineering Research,2022,26(16):2608-2612.

GOPAL R,MA uwei,KAUR S,et al.Surface modification and application of functionalized polymer nanofibers[C]//Molecular uilding locks for Nanotechnology,New York:Springer,2007:72-91.

[26]AHAR O,JAHAN ,SHER F,et al.Cellulose acetate-polyvinyl alcohol blend hemodialysis membranes integrated with dialysis performance and high biocompatibility[J].Materials Science amp; Engineering C,Materials for iological Applications,2021.DOI: 10.1016/j.msec.2021.112127.

[27]SEIDI F,HAO eifeng,XIAO Huining,et al.Layer-by-layer assembly for surface tethering of thin-hydrogel films:Design strategies and applications[J].he Chemical Record,2020,20(8):87-881.

[28]JIANG Peng,HE Yang,HAO Yiping,et al.Hierarchical surface architecture of hemodialysis membranes for eliminating homocysteine based on the multifunctional role of pyridoxal ′-phosphate[J].ACS Applied Materials amp; Interfaces,2020,12(33):36837-3680.

[29]LIU Yang,LI Guiliang,HAN Qiu,et al.Construction of electro-neutral surface on dialysis membrane for improved toxin clearance and anti-coagulation/inflammation through saltwater fish inspired trimethylamine N-oxide(MAO)[J].Journal of Membrane Science,2022.DOI: 10.1016/j.memsci.2021.119900.

[30]LUSIANA R A,SANGKOA V D A,SASONGKO N A,et al.Permeability improvement of polyethersulfone-polietylene glycol (PEG-PES) flat sheet type membranes by tripolyphosphate-crosslinked chitosan (PP-CS) coating[J].International Journal of iological Macromolecules,2020,12:633-644.

[31]ASHRAF M A,ISLAM A,U M A,et al.Fabrication and dialysis performance of functionalized multiwall carbon nanotubes integrated cellulose acetate/poly(vinylpyrrolidone) membranes[J].International Journal of iological Macromolecules,2021,191:872-880.

[32]RAHARJO Y,ISMAIL A F,DARFAN OHMAN M H,et al.Selectively mixed matrix hemodialysis membrane for adequate clearance of p-cresol by the incorporation of imprinted zeolite[J].RSC Advances,2023,13():2972-2983.

[33]U Minghong,AO orong,CHEN Jie.Reduction of the thrombogenicity of polyethylene membranes by radiation grafting[J].Journal of Radioanalytical and Nuclear Chemistry,2000,246(2):47-461.

[34]ANG Jingxia,PENG Chaorong,CHEN Hao,et al.Fabrication of hemocompatible polyethersulfone derivatives by one-step radiation-induced homogeneous polymerization[J].Materials oday Communications,2020.DOI: 10.1016/j.mtcomm.2020.10148.

[3]于旭峰.血液透析用納米纖維基復合膜的制備及其性能研究[D].上海:東華大學,2020.

YU Xufeng.Preparation and Properties of hin-Film Nanofibrous Composite Membranes for Hemodialysis[D].Shanghai:Donghua University,2020.

[36]XIX-RODRIGUE C,VARGUE-CAIM P,ALONO-GARCA A,et al.Amphiphilic poly(lactic acid) membranes with low fouling and enhanced hemodiafiltration[J].Separation and Purification echnology,2021.DOI: 10.1016/j.seppur.2020.118124.

[37]ANG Jianxiu,QIU Ming,HE Chunju.A zwitterionic polymer/PES membrane for enhanced antifouling performance and promoting hemocompatibility[J].Journal of Membrane Science,2020.DOI: 10.1016/j.memsci.2020.118119.

[38]LIU ei,FU Xiao,LIU Yanfeng,et al.Vorapaxar-modified polysulfone membrane with high hemocompatibility inhibits thrombosis[J].Materials Science and Engineering C,2021.DOI: 10.1016/j.msec.2020.11108.

[39]LI Dalong,SUN Xiuhua,GAO Changlu,et al.Improved water flux and antifouling properties of cardo poly(aryl ether ketone) ultrafiltration membrane by novel sulfobetaine polyimides additive[J].Separation and Purification echnology,2020.DOI: 10.1016/j.seppur.2020.117144.

[40]REN Jian,YANG Xin,YAN eixing,et al.mPEG-b-PES-b-mPEG-based candidate hemodialysis membrane with enhanced performance in sieving, flux,and hemocompatibility[J].Journal of Membrane Science,2022.DOI: 10.1016/j.memsci.2022.120680.

[41]HELMECKE ,ROSE I I,SURKAN M V,et al.Poly(styrene-alt-maleic anhydride)-copolymers blended in poly(ether sulfone)membranes as a platform for effective biomolecular surface functionalization[J].Journal of Membrane Science,2024.DOI: 10.1016/j.memsci.2023.12200.

[42]FAHMI M ,AHONIYYAH M,KHASANAH M,et al.Incorporation of graphene oxide in polyethersulfone mixed matrix membranes to enhance hemodialysis membrane performance[J].RSC Advances,2018,8(2):931-937.

[43]AHIRA V, MOHANY S, NAYAK S.Preparation and characterization of porous polyethersulfone (PES)membranes with improved biocompatibility by blending sulfonated polyethersulfone (SPES) and cellulose acetate(CA):A comparative study[J].Materials oday Communications,2020.DOI: 10.1016/j.mtcomm.2020.10144.

[44]KALUGIN D,AHIG J,SHOKER A,et al.Superhydrophobic polyether sulfone (PES) dialysis membrane with enhanced hemocompatibility and reduced human serum protein interactions:Ex vivo,in situ synchrotron imaging,experimental,and computational studies[J].Separation and Purification echnology,2024.DOI: 10.1016/j.seppur.2023.126071.

[4]FENG Yunbo,ANG Qian,SUN Shudong,et al.Advanced hemocompatible polyethersulfone composite artificial lung membrane with efficient CO2/O2 exchange Channel constructed by modified carbon nanotubes network[J].Journal of Materials Science amp; echnology,2023,160:181-193.

[46]FU Xiao,LEI ing,XIAO Yuan,et al.Preparation and blood compatibility of polyethersulfone dialysis membrane modified by apixaban as coagulation factor Xa inhibitor[J].iomaterials Advances,2022.DOI: 10.1016/j.bioadv.2022.213012.

[47]LIU Yang,LI Guiliang,HAN Qiu,et al.Cu(Ⅱ)-phenolic complex incorporated hemodialysis membranes for efficient urea removal via enhanced adsorption strategy[J].Journal of Membrane Science,2024.DOI: 10.1016/j.memsci.2024.122480.

[48]王旭.雜萘聯苯共聚醚砜血液透析膜的研制與性能[D].大連:大連理工大學,2022.

ANG Xu. Fabrication and Properties of Copoly(Phthalazinone iphenylether Sulfone)Hemodialysis Membran[D].Dalian:Dalian University of echnology,2022.

[49]劉燕妮,朱松磊,張榮麗.聚乳酸/氧化石墨烯復合膜的制備及生物相容性研究[J].塑料科技,2021,49(6):42-46.

LIU Yanni,HU Songlei,HANG Rongli.Study on the preparation and biocompatibility of polylactic acid/graphene oxide composite membrane[J].Plastics Science and echnology,2021,49(6):42-46.

[0]祁旭超.天然抗氧化物親水改性聚砜血液透析膜的制備及性能研究[D].天津:天津工業大學,2021.

[1]ANKOLIYA D,MEHA ,RAVAL H.Advances in surface modification techniques of reverse osmosis membrane over the years[J].Separation Science and echnology,2019,4(3):293-310.

HAO Changsheng,XUE Jimin,RAN Fen,et al.Modification of polyethersulfone membranes:A review of methods[J].Progress in Materials Science,2013,8(1):76-10.

[3]NAARI S,ADELRASOUL A.Impact of membrane modification and surface immobilization techniques on the hemocompatibility of hemodialysis membranes:A critical review[J].Membranes,2022.DOI: 10.3390/membranes12111063.

[4]陳寶林,王東安,封麟先,等.生物醫用高分子材料的血液相容性研究——抗凝血材料的設計[J].綏化學院學報,2007,27(1):186-188.

CHEN aolin,ANG Dongan,FENG Linxian,et al.Study on blood compatibility of biomedical polymer materials:Design of anticoagulant materials[J].Journal of Suihua University,2007,27(1):186-188.

ANG Yiwen,LIU Yang,HAN Qiu,et al.A novel poly (4-methyl-1-pentene)/polypropylene (PMP/PP) thin film composite (FC) artificial lung membrane for enhanced gas transport and excellent hemo-compatibility[J].Journal of Membrane Science,2022.DOI: 10.1016/j.memsci.2022.12039.

[6]GUO Lingli,CHENG Yanfang,REN Xu,et al.Simultaneous deposition of tannic acid and poly(ethylene glycol) to construct the antifouling polymeric coating on itanium surface[J].Colloids and Surfaces , iointerfaces,2021.DOI: 10.1016/j.colsurfb.2021.11192.

[7]EI Qianyu,FENG Shuman,U Lili.Glomerular endothelium-inspired anticoagulant surface coating on polyethersulfone hemodialysis membrane[J].Materials Chemistry and Physics,2023.DOI: 10.1016/j.matchemphys.2023.127364.

[8]KIM H,PANDA P K,SADEGHI K,et al.Poly (vinyl alcohol)/hydrothermally treated tannic acid composite films as sustainable antioxidant and barrier packaging materials[J].Progress in Organic Coatings,2023.DOI: 10.1016/j.porgcoat.2022.10730.

[9]CHEN Qi,HE Yang,HAO Yiping,et al.Intervening oxidative stress integrated with an excellent biocompatibility of hemodialysis membrane fabricated by nucleobase-recognized co-immobilization strategy of tannic acid, looped PEtOx brush and heparin[J].Journal of Membrane Science,2021.DOI: 10.1016/j.memsci.2021.119174.

[60]EI Qianyu,FENG Shuman,HANG ezhen,et al.A high-protein retained PES hemodialysis membrane with tannic acid as a multifunctional modifier[J].Colloids and Surfaces , iointerfaces,2022.DOI: 10.1016/j.colsurfb.2022.112921.

[61]ROSE I I,KAHER M,ROH H,et al.Single-step chitosan functionalized membranes for heparinization[J].Journal of Membrane Science,2022.DOI: 10.1016/j.memsci.2022.12067.

[62]ENG Jinwei,ANG Xuejie,XU Jing,et al.Facile method for covalent-bonding coating of crosslinked silicone layer onto poly(ester-urethane) surface to improve tensile properties and hemocompatibility[J].Progress in Organic Coatings,2021.DOI: 10.1016/j.porgcoat.2020.106111.

[63]葉卉,侯笑洋,黃莉蘭,等.血液透析膜在血液相容性和毒素強化清除方面的研究進展[J].中國材料進展,2022,41(7):20-24.

YE Hui,HOU Xiaoyang,HUANG Lilan,et al.A state of art of hemodialysis membranes in hemocompatibility and enhanced removal of toxins[J].Materials China,2022,41(7):20-24.

[64]KALEEKKAL N J.Heparin immobilized graphene oxide in polyetherimide membranes for hemodialysis with enhanced hemocompatibility and removal of uremic toxins[J].Journal of Membrane Science,2021. DOI:10.1016/j.memsci.2021.119068.

[6]張迪.沒食子酸插層i3C2x修飾血液透析膜表面及對氧化應激的干預[D].天津:天津工業大學,2021.

[66]YAN Sheng,U Mingming,QIU Yunren.he hemocompatibility of the modified polysulfone membrane with 4-(chloromethyl) benzoic acid and sulfonated hydroxypropyl chitosan[J].Colloids and Surfaces.,iointerfaces,2020.DOI: 10.1016/j.colsurfb.2019.110769.

[67]HENG Xin,NI Chunjun,XIAO enwen,et al.In vitro hemocompatibility and hemodialysis performance of hydrophilic Ionic liquid grafted polyethersulfone hollow fiber membranes[J].Separation and Purification echnology,2022.DOI: 10.1016/j.seppur.2022.121464.

[68]LI Heng,GUO Yu,MA uyun,et al.he polydopamine-assisted heparin anchor enhances the hydrophilicity,hemocompatibility,and biocompatibility of polyurethane[J].Journal of Applied Polymer Science,2023.DOI: 10.1002/app.332.

[69]HANG Ruhao,SHI Xiao,HUANG Xiaocheng,et al.Vapor-based hybrid grafting of heparin-like coating for dialysis membranes with enhanced hemocompatibility[J].Journal of Membrane Science,2023.DOI: 10.1016/j.memsci.2023.121963.

[70]LIU Juanjuan,YANG Yue,LU Xiaolong,et al.Structure design and performance study on anticoagulant-separation dual functional PVC plasma separation membrane[J].Separation and Purification echnology,2024.DOI: 10.1016/j.seppur.2023.12484.

[71]蔣邵平,王果玉,彭朝榮,等.輻射接枝磺酸基改性聚醚砜膜的研究[J].化工新型材料,2021,49(11):79-84.

JIANG Shaoping,ANG Guoyu,PENG Chaorong,et al.Modification of polyethersulfone membrane by radiation grafting sulfonic acid[J].New Chemical Materials,2021,49(11):79-84.

[72]PENG Lincai,LI Hui,MENG Yahong.Layer-by-layer structured polysaccharides-based multilayers on cellulose acetate membrane: owards better hemocompatibility, antibacterial and antioxidant activities[J].Applied Surface Science,2017,401:2-39.

[73]YU Ying,CUI Rongqi,ANG Xin,et al.Preparation of multifunctional poly(l-lactic acid) film using heparin-mimetic polysaccharide multilayers: Hemocompatibility, cytotoxicity, antibacterial and drug loading/releasing properties[J].International Journal of iological Macromolecules,2020,1:14-26.

[74]ANG Qiqi,MU Changjun,YU Yanan,et al.Inhibiting advanced glycation end products (AGEs) of high-performance hemodialysis membranes self-assembled by Gallic acid and i3C2x MXene[J].Chemical Engineering Journal,2024.DOI: 10.1016/j.cej.2024.1036.

[7]HE Yang,SUN Hanshu,ANG Yanjie,et al.Nb2Cx MXene coating with inhibition of oxidative stress prepared by Marangoni effect for hemodialysis therapy[J].Chemical Engineering Journal,2024.DOI: 10.1016/j.cej.2024.10047.

[76]XIAO eng,ANG Yi,ANG Hui,et al.Anticoagulant and antioxidant properties of hemodialysis membranes modified by hydrogels incorporating carbon dots[J].Journal of Membrane Science,2024.DOI: 10.1016/j.memsci.2023.122318.

[77]姜智旭,賈金蘭,石璐,等.L-精氨酸改性 PVDF 抗凝血膜的制備及血液相容性研究[J].功能材料,201,46 (23):23109-23114.

JIANG hixu,JIA Jinlan,SHI Lu,et al.Preparation and blood compatibility of PVDF membrane modified with L-Arginine[J].Journal of Functional Materials,201,46(23):23109-23114.

[78]田懿,朱怡學,童霄,等.基于CO2促進傳輸的抗凝血非對稱PMP膜的構建及其性能研究[J].膜科學與技術,2024,44(3):38-48.

IAN Yi,HU Yixue,ONG Xiao,et al.Construction and properties research of anticoagulated asymmetric PMP membrane based on CO2 facilitated transport[J].Membrane Science and echnology,2024,44(3):38-48.

[79]XU Lin,JI Haifeng,HONG Rui,et al.Antioxidative hydrogel-embedded polyethersulfone membrane with improved hemocompatibility to alleviate oxidative stress[J].Journal of Membrane Science,2023.DOI: 10.1016/j.memsci.2023.121866.

[80]LIU Yang,LI Guiliang,HAN Qiu,et al.Designing adsorptive membranes for removing protein-bound uremic toxins via π-π and cation-π interaction[J].Journal of Membrane Science,2023.DOI: 10.1016/j.memsci.2023.12184.

主站蜘蛛池模板: 国产91丝袜在线播放动漫 | 亚洲v日韩v欧美在线观看| 九色在线观看视频| 嫩草在线视频| 操操操综合网| 欧美精品在线看| 日韩国产另类| 亚洲成人网在线观看| 直接黄91麻豆网站| 女同国产精品一区二区| 蝴蝶伊人久久中文娱乐网| 全色黄大色大片免费久久老太| 日韩精品一区二区三区视频免费看| 看国产一级毛片| 亚洲一区二区日韩欧美gif| 久久精品视频亚洲| 欧美成人精品高清在线下载| 国产第一页免费浮力影院| 午夜无码一区二区三区| 香蕉网久久| 国产屁屁影院| 国产91丝袜在线播放动漫| 一级看片免费视频| 中文字幕一区二区视频| 国产又色又爽又黄| 在线观看欧美国产| 欧美一级高清片欧美国产欧美| 九九精品在线观看| 精品国产自| 亚洲综合一区国产精品| 亚洲成人动漫在线| 一级不卡毛片| 亚洲日韩精品伊甸| 精品国产福利在线| 国产JIZzJIzz视频全部免费| 国产麻豆aⅴ精品无码| 中文字幕av无码不卡免费| 国产精品永久免费嫩草研究院| 日韩在线视频网| 免费欧美一级| 福利在线一区| 97人妻精品专区久久久久| 日本91在线| 四虎成人精品在永久免费| 中国精品自拍| 色综合久久88色综合天天提莫| 国产91在线|日本| 亚洲欧洲一区二区三区| 国产精品自拍合集| 91无码国产视频| 91福利在线看| 在线日韩一区二区| 手机在线国产精品| 国产成人久久777777| 十八禁美女裸体网站| 超碰91免费人妻| 国产精品视频第一专区| 午夜限制老子影院888| 欧美日韩免费观看| 精品少妇人妻无码久久| 久久频这里精品99香蕉久网址| 精品国产中文一级毛片在线看| 久久国产V一级毛多内射| 国产亚洲精品无码专| 成人亚洲国产| 精品一区二区三区中文字幕| 亚洲精品桃花岛av在线| 国内精品视频在线| 亚洲精品自拍区在线观看| 在线欧美一区| 亚洲va欧美va国产综合下载| 一级香蕉人体视频| 久久亚洲欧美综合| 好吊日免费视频| 精品日韩亚洲欧美高清a| 永久免费无码成人网站| a级毛片免费网站| 亚洲福利一区二区三区| 亚洲全网成人资源在线观看| 国产成人亚洲精品色欲AV| 国产在线观看99| 五月天久久综合|