999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

復對稱算子及相關算子類研究進展

2025-02-06 00:00:00趙佳音朱森
吉林大學學報(理學版) 2025年1期
關鍵詞:研究進展博士

摘要: 復對稱算子是指Hilbert空間上具有對稱矩陣表示的線性算子. 綜述近年來復對稱算子的主要研究進展及若干公開問題, 包括特殊復對稱算子、 約化子空間、 范數閉包問題和代數性質等.

關鍵詞: 復對稱算子; 斜對稱算子; Toeplitz算子; 截斷Toeplitz算子; 加權移位; 部分等距; 約化子空間

中圖分類號: O177.1" 文獻標志碼: A" 文章編號: 1671-5489(2025)01-0047-13

Research Progress of Complex Symmetric Operatorsand Related Operator Classes

ZHAO Jiayin1, ZHU Sen2

(1. School of Mathematics and Statistics, Changchun University of Science and Technology, Changchun 130022, China;

2. College of Mathematics, Jilin University, Changchun 130012, China)

Abstract: A complex symmetric" operator refers to a linear operator with a symmetric matrix representation" on a" Hilbert space.

We review the main research" advances" and" several open problems of complex symmetric operators in recent years, involving special complex symmetric operators, reducing subspaces,

the norm closure problem, and algebraic properties" and so on.

Keywords: complex symmetric operator; skew symmetric operator; Toeplitz operator; truncated Toeplitz operator; weighted shift; partial isometry; reducing subspace

收稿日期: 2024-11-26.

第一作者簡介: 趙佳音(1991—), 女, 漢族, 博士, 副教授, 從事算子理論與算子代數的研究, E-mail: zhaojiayin2014@163.com.

通信作者簡介: 朱 森(1981—), 男, 漢族, 博士, 教授, 博士生導師, 從事算子理論與算子代數的研究, E-mail: zhusen@jlu.edu.cn.

基金項目: 國家自然科學基金(批準號: 12171195; 12101077).

0 引 言

本文用H表示具有內積〈·,·〉的可分無窮維復Hilbert空間, 用B(H)表示

H上全體有界線性算子構成的代數, K(H)表示B(H)的緊算子理想.

對于T∈B(H)和C∈Bc(H), 可否利用T和C給出W(CT)的具體刻畫.

參考文獻

[1] GARCIA S R, PUTINAR M. Complex Symmetric Operators and Applications [J]. Trans Amer Math Soc, 2006, 358(3): 1285-1315.

[2] GARCIA S R, PUTINAR M. Complex Symmetric Operators and Applications.Ⅱ [J]. Trans Amer Math Soc, 2007, 359(8): 3913-3931.

[3] HUA L K. On the Theory of Automorphic Functions of a Matrix Level.Ⅰ.Geometrical Basis [J]. Amer J Math, 1944, 66: 470-488.

[4] JACOBSON N. Normal Semi-linear Transformations [J]. Amer J Math, 1939, 61(1): 45-48.

[5] SCHUR I. Ein Satz Ueber Quadratische Formen Mit Komplexen Koeffizienten [J]. Amer J Math, 1945, 67: 472-480.

[6] SIEGEL C L. Symplectic Geometry [J]. Amer J Math, 1943, 65: 1-86.

[7] TAKAGI T. On an Algebraic Problem Related to an Analyt

ic Theorem of Carathéodory and Fejér and on an Allied Theorem of Landau [J]. Japanese J Math, 1925, 1: 83-93.

[8] GLAZMAN I M. An Analogue of the Extension Theory of Hermitian Operators and a Non-symmetric One-Dimensional Boundary Problem on a Ha

lf-Axis [J]. Dokl Akad Nauk SSSR, 1957, 115: 214-216.

[9] GLAZMAN I M. Direct Methods of Qualitative Spectral Analysis of Sing

ular Differential Operators [M]. New York: Daniel Davey amp; Co., Inc., 1966: 1-234.

[10] ZAGORODNYUK S M. On a J-Polar Decomposition of a Bounded Operato

r and Matrices of J-Symmetric and J-Skew-Symmetric Operators [J]. Banach J Math Anal, 2010, 4(2): 11-36.

[11] SARASON D. Algebraic Properties of Truncated Toeplitz Operators [J]. Oper Matrices, 2007, 1(4): 491-526.

[12] GARCIA S R. Conjugation and Clark Operators [M]//Recent Advances in

Operator-Related Function Theory, Contemporary Mathematics: Vol.393. Providence, RI: American Mathematical Society, 2000: 67-111.

[13] GARCIA S R. Means of Unitaries, Conjugations, and the Friedrichs Operator [J]. J Math Anal Appl, 2007, 335(2): 941-947.

[14] GARCIA S R. The Norm and Modulus of a Foguel Operator [J]. Indiana Univ Math J, 2009, 58(5): 2305-2315.

[15] GARCIA S R, PRODAN E, PUTINAR M. Mathematical and Physical Aspects o

f Complex Symmetric Operators [J]. J Phys A: Math Theor, 2014, 47(35): 353001-1-353001-54.

[16] HAI P V, PUTINAR M. Complex Symmetric Evolution Equations [J]. Anal Math Phys, 2020, 10(1): 14-1-14-36.

[17] PRODAN E, GARCIA S R, PUTINAR M. Norm Estimates of Complex Symmetric

Operators Applied to Quantum Systems [J]. J Phys A: Math Gen, 2006, 39(2): 389-400.

[18] GARCIA S R, WOGEN W R. Complex Symmetric Partial Isometries [J]. J Funct Anal, 2009, 257(4): 1251-1260.

[19] ZHU S, LI C G. Complex Symmetric Weighted Shifts [J]. Trans Amer Math Soc, 2013, 365(1): 511-530.

[20] BARANOV A, CHALENDAR I, FRICAIN E, et al.

Bounded Symbols and Reproducing Kernel Thesis for Truncated Toeplitz Operators [J]. J Funct Anal, 2010, 259(10): 2673-2701.

[21] BARANOV A, BESSONOV R, KAPUSTIN V. Symbols of Truncated Toeplitz Operators [J]. J Funct Anal, 2011, 261(12): 3437-3456.

[22] BESSONOV R. Truncated Toeplitz Operators of Finite Rank [J]. Proc Amer Math Soc, 2014, 142(4): 1301-1313.

[23] CHU C. Normal Truncated Toeplitz Operators [J]. Complex Anal Oper Theory, 2018, 12(4): 849-857.

[24] GARCIA S R, ROSS W T, WOGEN W R. C*-Algebras Generated by Truncat

ed Toeplitz Operators [M]. Concrete Operators, Spectral Theory, Operators in Harmonic Analysis and Approximation, 236. Basel: Birkhuser, 2014: 181-192.

[25] SEDLOCK N A. Algebras of Truncated Toeplitz Operators [J]. Oper Matrices, 2011, 5(2): 309-326.

[26] KO E, LEE J E. Normal Truncated Toeplitz Operators on Finite-Dimensional Spaces [J]. Linear Multilinear Algebra, 2015, 63(10): 1947-1971.

[27] MA P, ZHENG D C. Compact Truncated Toeplitz Operators [J]. J Funct Anal, 2016, 270(11): 4256-4279.

[28] BERCOVICI H, TIMOTIN D. Truncated Toeplitz Operators and Complex Symmetries [J]. Proc Amer Math Soc, 2018, 146(1): 261-266.

[29] CIMA J A, GARCIA S R, ROSS W T, et al.

Truncated Toeplitz Operators: Spatial Isomorphism, Unitary Equivalence, and Similarity [J]. Indiana Univ Math J, 2010, 59(2): 595-620.

[30] STROUSE E, TIMOTIN D, ZARRABI M. Unitary Equivalence to Truncated Toeplitz Operators [J]. Indiana Univ Math J, 2012, 61(2): 525-538.

[31] GARCIA S R, LUTZ B, TIMOTIN D. Two Remarks about Nilpot

ent Operators of Order Two [J]. Proc Amer Math Soc, 2014, 142(5): 1749-1756.

[32] GARCIA S R, MASHREGHI J, ROSS W T. Introduction to Mo

del Spaces and Their Operators [M]//Cambridge Studies in Advanced Mathematics, 148. Cambridge: Cambridge University Press, 2016: 1-542.

[33] GUO K Y, ZHU S. A Canonical Decomposition of Complex Symmetric Operators [J]. J Operator Theory, 2014, 72(2): 529-547.

[34] BU Q G, CHEN Y, ZHU S. Complex Symmetric Toeplitz Operators [J]. Integral Equations Operator Theory, 2021, 93(2): 15-1-15-19.

[35] KO E, LEE J E. On Complex Symmetric Toeplitz Operators [J]. J Math Anal Appl, 2016, 434(1): 20-34.

[36] HAN K K, WANG M F, WU Q. Unbounded Complex Symmetric Toeplitz Operators [J]. Acta Math Sci: Ser B (Engl Ed), 2022, 42(1): 420-428.

[37] WALEED NOOR S. Complex Symmetry of Toeplitz Operators with Continuous Symbols [J]. Arch Math (Basel), 2017, 109(5): 455-460.

[38] HU X H, DONG X T, ZHOU Z H. Complex Symmetric Monomia

l Toeplitz Operators on the Unit Ball [J]. J Math Anal Appl, 2020, 492(2): 124490-1-124490-16.

[39] GARCIA S R, HAMMOND C. Which Weighted Composition Operators Are Complex Symmetric? [M].

Operator Theory: Advances and Applications, 236. Basel: Birkhuser, 2014: 171-179.

[40] JUNG S, KIM Y, KO E, et al. Complex Symmetric Weigh

ted Composition Operators on H2(D) [J]. J Funct Anal,2014, 267(2): 323-351.

[41] WALEED NOOR S. On an Example of a Complex Symmetric C

omposition Operator on H2(D) [J]. J Funct Anal, 2015, 269(6): 1899-1901.

[42] WANG M F, YAO X X. Complex Symmetry of Weighted Compo

sition Operators in Several Variables [J]. Internat J Math, 2016, 27(2): 1650017-1-1650017-14.

[43] GAO Y X, ZHOU Z H. Complex Symmetric Composition Operators Induced by Linear Fractional Maps [J]. Indiana Univ Math J, 2020, 69(2): 367-384.

[44] COWEN C C. The Commutant of an Analytic Toeplitz Operator [J]. Trans Amer Math Soc, 1978, 239: 1-31.

[45] THOMSON J. The Commutant of a Class of Analytic Toeplitz Operators.Ⅱ. [J]. Indiana Univ Math J, 1976, 25(8): 793-800.

[46] THOMSON J. The Commutant of a Class of Analytic Toeplitz Operators [J]. Amer J Math, 1977, 99(3): 522-529.

[47] DOUGLAS R G, PUTINAR M, WANG K. Reducing Subspaces for Analytic Multipliers of the Bergman Space [J]. J Funct Anal, 2012, 263(6): 1744-1765.

[48] GUO K Y, HUANG H S. Geometric Constructions of Thin Blaschke Products and Reducing Subspace Problem [J]. Proc Lond Math Soc, 2014, 109(4): 1050-1091.

[49] ZHU S. Approximation of Complex Symmetric Operators [J]. Math Ann, 2016, 364(1/2): 373-399.

[50] HALMOS P R. Irreducible Operators [J]. Michigan Math J, 1968, 15: 215-223.

[51] LIU T, ZHAO J Y, ZHU S. Reducible and Irreducible A

pproximation of Complex Symmetric Operators [J]. J London Math Soc, 2019, 100(1): 341-360.

[52] VOICULESCU D. A Non-commutative Weyl-von Neumann Theorem[J]. Rev Roumaine Math Pures Appl, 1976, 21(1):" 97-113.

[53] WANG C, ZHU S. Reducing Subspaces of Complex Symmetric Operators [J]. Complex Anal Oper Theory, 2020, 14(4): 45-1-45-9.

[54] HALMOS P R. Ten Problems in Hilbert Space [J]. Bull Amer Math Soc, 1970, 76: 887-933.

[55] APOSTOL C, FIALKOW L A, HERRERO D A, et al. Approximation of Hilbert

Space Operators: Vol.Ⅱ [M]. Research Notes in Mathematics, 102. Boston, MA: Pitman (Advanced Publishing Program), 1984: 1-524.

[56] HERRERO D A. Approximation of Hilbert Space Operators: Vol.1 [M]. Pitman Re

search Notes in Mathematics Series, Vol.224. 2nd ed. New York: John Wiley amp; Sons, Inc, 1989: 1-332.

[57] ZHU S, LI C G, JI Y Q. The Class of Complex Symmetric Operators Is Not Norm Closed [J]. Proc Amer Math Soc, 2012, 140(5): 1705-1708.

[58] GARCIA S R, POORE D E. On the Norm Closure Problem for Complex

Symmetric Operators [J]. Proc Amer Math Soc, 2013, 141(2): 549.

[59] GARCIA S R, POORE D E. On the Norm Closure of the Complex Symmetric Op

erators: Compact Operators and Weighted Shifts [J]. J Funct Anal, 2013, 264(3): 691-712.

[60] GUO K Y, JI Y Q, ZHU S. A C*-Algebra Approach to Complex Symmetric Op

erators [J]. Trans Amer Math Soc, 2015, 367(10): 6903-6942.

[61] DANCIGER J, GARCIA S R, PUTINAR M. Variational Principl

es for Symmetric Bilinear Forms [J]. Math Nachr, 2008, 281(6): 786-802.

[62] KLIS'-GARLICKA K, PTAK M. C-Symmetric

Operators and Reflexivity [J]. Oper Matrices, 2015, 9(1): 225-232.

[63] CARTAN é. Sur Les Domaines Bornés Homogènes de L’espace de

n Variables Complexes [J]. Abh Math Semin Univ Hamburg, 1935, 11: 116-162.

[64] FRIEDMAN Y, RUSSO B. The Gelfand-Naimark Theorem for JB*-Triples [J]. Duke Math J, 1986, 53(1): 139-148.

[65] WANG C, ZHU S. The Jordan Algebra of Complex Symmetric Operators

[J/OL]. Chinese Ann Math (Ser B), (2023-11-21)[2024-11-01]. https://arxiv.org/pdf/1912.10391.

[66] FONG C K, MIERS C R, SOUROUR A R. Lie and Jordan Ideals of Operators

on Hilbert Space [J]. Proc Amer Math Soc, 1982, 84(4): 516-520.

[67] KADISON R V. Isometries of Operator Algebras [J]. Ann of Math, 1951, 54(2): 325-338.

[68] KURODA S T. On a Theorem of Weyl-von Neumann [J]. Proc Japan Acad, 1958, 34: 11-15.

[69] WANG C, ZHAO J Y, ZHU S. Range Inclusion and Diagonal

ization of Complex Symmetric Operators [J/OL]. Canad J Math, (2024-04-04)\70] BERG I D. An Extension of the Weyl-von Neumann Theorem

to Normal Operators [J]. Trans Amer Math Soc, 1971, 160: 365-371.

[71] SIKONIA W G. Essential, Singular, and Absolutely Continuous Spectra [D]. Colorado, USA: University of Colorado at Boulder, 1970.

[72] HALMOS P R. Continuous Functions of Hermitian Operators [J]. Proc Amer Math Soc, 1972, 31: 130-132.

[73] VOICULESCU D. Some Results on Norm-Ideal Perturbations

of Hilbert Space Operators [J]. J Operator Theory, 1979, 2(1): 3-37.

[74] DOUGLAS R G. On Majorization, Factorization, and Range Inclusion of Op

erators on Hilbert Space [J]. Proc Amer Math Soc, 1966, 17: 413-415.

[75] EMBRY M R. Factorization of Operators on Banach Space [J]. Proc Amer Math Soc, 1973, 38: 587-590.

[76] LI C G, ZHU S. Skew Symmetric Normal Operators [J]. Proc Amer Math Soc, 2013, 141(8): 2755-2762.

[77] ZHU S, ZHAO J Y. The Riesz Decomposition Theorem for Skew Symmetric Operators [J]. J Korean Math Soc, 2015, 52(2): 403-416.

[78] ZHU S. Skew Symmetric Weighted Shifts [J]. Banach J Math Anal, 2015, 9(1): 253-272.

[79] ZHU S. Complex Symmetric Operators, Skew Symmetric Operators and Reflexivity [J]. Oper Matrices, 2017, 11(4): 941-951.

[80] DE LA HARPE P. Classical Banach-Lie Algebras and Banach-Lie Groups o

f Operators in Hilbert Space [M]. Lecture Notes in Mathematics, Vol.285. Berlin: Springer-Verlag, 1972: 1-160.

[81] BU Q G, ZHU S. The Orthogonal Lie Algebra of Operators: Ideals and Derivations [J]. J Math Anal Appl, 2020, 489(1): 124-134.

[82] BU Q G, ZHU S. The Weyl-von Neumann Theorem for Skew-Symmetric Operators [J]. Ann Funct Anal, 2023, 14(2): 43-1-43-12.

[83] PTAK M, SIMIK K, WICHER A. C-Normal Operators [J]. Electron J Linear Algebra, 2020, 36: 67-79.

[84] WANG C, ZHAO J Y, ZHU S. Remarks on the Structure of C-Normal Operators [J]. Linear Multilinear Algebra, 2022, 70(9): 1682-1696.

[85] LIU T, SHI L Y, WANG C, et al. An Interpolation Problem for Conjugatio

ns [J]. J Math Anal Appl, 2021, 500(1): 125118-1-125118-11.

[86] LIU T, XIE X Y, ZHU S. An Interpolation Problem for Conjugations Ⅱ [J]. Mediterr J Math, 2022, 19(4): 153-1-153-13.

[87] RAMESH G, SUDIP RANJAN B, VENKU NAIDU D. A Representation of Compact C-

Normal Operators [J]. Linear Multilinear Algebra, 2023, 71(9): 1565-1577.

[88] BHUIA S R. A Note on C-Normal Weighted Composition Operators on th

e Fock Space in Several Variables [J]. Monatsh Math, 2023, 201(1): 53-64.

[89] AMARA Z, OUDGHIRI M. Linear Maps Preserving C-Normal Operators [J]. Mediterr J Math, 2022, 19(3): 123-1-123-13.

[90] KOLACZEK D, MüLLER V. Numerical Ranges of Antilinear Operators [J].

Integral Equations Operator Theory, 2024, 96(2): 17-1-17-15.

(責任編輯: 趙立芹)

猜你喜歡
研究進展博士
MiRNA-145在消化系統惡性腫瘤中的研究進展
制冷博士來幫忙
離子束拋光研究進展
神奇博士感冒了
獨腳金的研究進展
中成藥(2017年9期)2017-12-19 13:34:44
自作聰明的博士蚊
快樂語文(2016年15期)2016-11-07 09:46:39
讀博士的路雖苦,我卻樂此不疲
博士蚊
EVA的阻燃研究進展
中國塑料(2016年4期)2016-06-27 06:33:22
肝衰竭的研究進展
主站蜘蛛池模板: 亚洲视频在线观看免费视频| www.亚洲色图.com| 国产亚洲欧美在线人成aaaa| 国产三级成人| 午夜精品一区二区蜜桃| 免费jizz在线播放| 自拍偷拍欧美| 亚洲国产一区在线观看| 中文字幕亚洲另类天堂| 午夜日b视频| 亚洲欧洲一区二区三区| 亚洲欧美一区在线| 亚洲精品综合一二三区在线| 欧洲日本亚洲中文字幕| 国内精品一区二区在线观看| a级毛片免费播放| 亚欧成人无码AV在线播放| 精品人妻系列无码专区久久| 色婷婷狠狠干| 国产精品尤物铁牛tv | 日本欧美精品| 天天综合天天综合| 91无码人妻精品一区二区蜜桃| 国产欧美日韩综合在线第一| 国产精品开放后亚洲| 欧美精品1区| 老色鬼欧美精品| 欧美在线三级| 国产精品第一区在线观看| 日韩大片免费观看视频播放| 精品国产福利在线| 国产在线精品香蕉麻豆| AⅤ色综合久久天堂AV色综合| 国产乱人伦精品一区二区| 在线观看亚洲人成网站| 国产精鲁鲁网在线视频| a亚洲天堂| 丁香六月综合网| 干中文字幕| 亚洲精品动漫| 在线观看网站国产| 国产99在线观看| 久草视频精品| 香蕉久久国产超碰青草| 免费国产黄线在线观看| 国产va在线观看免费| 亚洲国产91人成在线| 国产综合精品一区二区| 国产一级毛片网站| 26uuu国产精品视频| 亚洲视频一区在线| 欧美成人午夜视频免看| 国产91色在线| 国产成人三级在线观看视频| 永久免费无码日韩视频| 91福利免费视频| 国产精品极品美女自在线网站| 日本不卡免费高清视频| 色妞www精品视频一级下载| 国产视频a| 亚洲乱伦视频| 国产亚洲精品91| 国产精品亚洲片在线va| 欧美、日韩、国产综合一区| 91成人在线免费视频| 蜜臀AV在线播放| 97久久精品人人做人人爽| 激情乱人伦| 亚洲欧美日韩另类| 国产办公室秘书无码精品| 国模在线视频一区二区三区| 青草免费在线观看| 99在线观看国产| 一本大道无码日韩精品影视| 日本精品视频一区二区 | 国产成人免费高清AⅤ| 极品性荡少妇一区二区色欲| 亚洲av综合网| 国产v欧美v日韩v综合精品| 日本一本正道综合久久dvd| 日本一区二区不卡视频| 欧美国产综合视频|