999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

類風濕性關節炎基因治療技術研究進展

2025-02-06 00:00:00張虎剛賈佳馨劉涵玉李全順
吉林大學學報(理學版) 2025年1期
關鍵詞:類風濕關節炎

摘要: 基于基因治療作為從根本上治療疾病的技術手段, 為類風濕性關節炎的治療帶來新的思路和方法, 綜述類風濕性關節炎基因治療的相關研究進展, 包括小干擾RNA(siRNA)、 微小RNA(miRNA)、 DNA, CRISPR/Cas9系統、 脫氧核酶以及一些其他技術, 為基因治療在類風濕性關節炎領域的應用提供借鑒思路, 并為類風濕性關節炎患者提供更有效、 更具針對性的治療方案.

關鍵詞:" 類風濕關節炎; 基因治療; 小干擾RNA; 微小RNA; DNA折紙; CRISPR/Cas9系統

中圖分類號: Q527" 文獻標志碼: A" 文章編號: 1671-5489(2025)01-0216-13

Research Advances of Gene TherapyTechnology for Rheumatoid Arthritis

ZHANG Hugang," JIA Jiaxin," LIU Hanyu," LI Quanshun

(Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education,

Jilin University," Changchun 130012, China)

Abstract:""" Based on gene therapy as a fundamental treatment for diseases, it brings new ideas and methods for the treatment of rheumatoid arthritis (RA). We review" the relevant research advances" of gene therapy for rheumatoid arthritis," including small interfering RNA (siRNA), micro RNA (miRNA)," DNA," CRISPR/Cas9 system," deoxyribonuclease and some other technologies,"" providing reference ideas for the application of" gene therapy in the field of RA and offering more" effective and targeted treatment plans for the patients with RA.

Keywords: rheumatoid arthritis; gene therapy; small interfering RNA; micro RNA; DNA origami; CRISPR/Cas9 system

類風濕性關節炎(rheumatoid arthritis, RA)是一種自身免疫性疾病, 以關節炎癥、 疼痛和功能障礙為臨床特征, 影響全球0.5%~1%的人口[1-2]. 其特征表現為對稱性、 多關節的滑膜炎癥, 若未經及時有效的治療, 則可逐漸導致關節軟骨和骨組織破壞, 進而引發關節畸形和功能喪失, 嚴重影響患者生活質量, 并增加社會醫療成本. 長期以來, 類風濕性關節炎的治療處于不斷探索與發展階段. 傳統的治療方法主要以藥物治療為主, 如非甾體抗炎藥(NSAIDs)、 抗風濕藥物(DMARDs)以及糖皮質激素等, 其共同點是可有效緩解疼痛和炎癥, 但對疾病進程的控制作用有限, 同時藥物也會導致諸多并發癥. 基因治療能通過調控與疾病相關的基因表達, 從根本上糾正疾病發生發展的異常生物學過程, 為傳統治療效果不理想的患者提供更有效的治療方案." 常用的基因治療方法包括RNA(小干擾RNA(siRNA)和微小RNA(miRNA))、 反義寡核苷酸(ASO)、 DNA(質粒和DNA折紙)、 基因編輯體系、 脫氧核酶(Dz)、 靶向蛋白水解嵌合體(PROTAC)技術以及疫苗等, 為類風濕性關節炎的治療提供了多種可能.

本文綜述常用基因治療方法在類風濕性關節炎領域的研究進展, 并對該技術未來的發展前景進行展望.

1 RNA治療

1.1 小干擾RNA

siRNA作為一類長度約為21~23個核苷酸的雙鏈RNA分子, 基于RNA干擾 (RNA interference) 在生物體內發揮重要的基因調控作用[3], 具體作用過程如下: 1) 起始階段." Dicer酶作為具有RNase Ⅲ活性的核酸內切酶, 特異性識別并切割細胞內長鏈dsRNA以形成多個雙鏈siRNA分子. 2) 效應階段. RNA誘導沉默復合物 (RNA-induced silencing complex," RISC) 內包含的Argonaute 蛋白家族成員識別、 結合siRNA的引導鏈并降解反義鏈. 引導鏈通過堿基互補配對結合靶mRNA和Argonaute 蛋白作為核酸內切酶切割并降解靶mRNA, 阻止翻譯為功能蛋白進而實現基因沉默. siRNA以其高度的底物特異性, 可實現精準基因調控避免脫靶效應, 以高效沉默活性快速結合靶mRNA完成基因沉默, 在基因功能研究、 疾病治療及農業生物技術領域具有廣闊的應用前景[4]. 目前, siRNA已成功應用于類風濕性關節炎基因治療領域, 通過干預NF-κB和MAPK等經典炎癥信號通路以抑制滑膜炎癥、 降低骨損傷以及減緩類風濕性關節炎小鼠的病理學進程[5]. 如 Liu等[6]將HIF-1α siRNA裝載至以重組高密度脂蛋白(rHDL)為核心、 摻入磷酸鈣(CaP)及載脂蛋白E3(apoE3)形成的HIF-CaP-rHDL納米復合物中, 將納米復合物轉染至脂多糖誘導的炎癥巨噬細胞模型, 可特異性降低HIF-1α表達水平, 抑制NF-κB和 MAPK信號通路p-p65和p-IκBα等因子的表達, 有效減少NF-κB受體活化因子配體(RANKL)誘導的破骨細胞生成. 將CaP-rHDL/siHIF納米復合物經尾靜脈注射至膠原誘導的類風濕性關節炎小鼠模型(CIA模型)中, 在實驗終點第46天時, 納米復合物高效降低CIA小鼠爪部腫脹至3.0 mm以下, 并降低血清炎癥因子表達水平、 緩解炎癥滑膜細胞浸潤及軟骨損傷(圖1).

Guo等[7]將TNF-α siRNA裝載至由三價鐵(Fe Ⅲ)和單寧酸(TA) 配位形成的抗氧化金屬有機框架材料中, 再經牛血清白蛋白 (BSA) 修飾后得到TFSB納米復合物. 該納米復合物能主動靶向M1型巨噬細胞受體實現高效基因遞送, 可顯著降低炎癥巨噬細胞內TNF-α,IL-1β和IL-6等炎癥因子水平." 此外, 納米復合物轉染后炎癥巨噬細胞內M1型巨噬細胞蛋白標識物CD68和iNOS表達量下降, M2型巨噬細胞標識物Arg-1和CD206等表達量升高, 實現巨噬細胞復極化. 經尾靜脈注射熒光標記TNF-α siRNA后, 可蓄積至CIA小鼠發炎關節, 降低局部炎癥因子基因及蛋白表達水平, 促使關節炎癥巨噬細胞復極化, 抑制金屬基質蛋白酶2 (MMP2) 含量的增加以預防軟骨損傷, 減緩CIA炎癥疾病進程(圖2).

Nasra等[8]將靶向NF-κB的REL-A siRNA和甲氨蝶呤 (MTX) 裝載至葉酸修飾的脂質體中得到FOL-脂質體納米復合物以實現對RA的協同治療. FOL-脂質體表面修飾的葉酸能主動靶向至M1型炎癥巨噬細胞表面的葉酸受體, 實現藥物在巨噬細胞內的高效富集; 在膠原誘導的類風濕性關節炎大鼠模型中, 納米復合物有效降低滑膜炎癥并改善動物活動能力;" FOL-脂質體納米復合物可抑制IL-6等炎癥因子、 類風濕因子(RF)以及C反應蛋白(CRP)的表達水平(圖3). 該研究高效抑制RA病灶部位炎癥反應級聯放大, 實現巨噬細胞去極化, 恢復關節免疫微環境, 為RA的納米基因治療體系構建提供了實驗依據.

Kim等[9]將靶向跨膜受體蛋白Notch1的siRNA封裝至硫醇化殼聚糖納米顆粒中形成siRNA(Notch1)-NPs納米復合物, 將該納米復合物轉染至炎癥巨噬細胞中, 可降低細胞內Notch1的表達水平. 利用Flamma FPR-675標記siRNA并基于活體成像檢測核酸分子的生物分布, 結果表明, 納米復合物經大鼠尾靜脈注射10 h后高效蓄積在炎癥關節部位, 進而促使Notch1 siRNA在關節部位更好地發揮作用. 納米復合物在建模26 d后降低了關節炎臨床評分, 緩解了大鼠爪部腫脹(圖4); 病理學切片結果顯示, 納米復合物能緩解軟骨損傷, 降低滑膜炎癥細胞的浸潤, 同時未產生顯著的副作用, 為類風濕性關節炎基因治療提供了一種安全有效的方法.

1.2 微小核糖核酸

miRNA是一類內源性的非編碼單鏈RNA分子, 長度約為19~25個核苷酸, 在生物體內廣泛存在, 且在不同組織和細胞類型中均具有特定的表達模式[10]. 其作用機制是通過與靶mRNA的3′端非翻譯區(3′-UTR)的互補序列結合, 進而調節mRNA的穩定性和翻譯, 導致靶向mRNA 降解或抑制其翻譯過程, 是細胞發育、 增殖、 分化和凋亡等基本生物過程的重要調控器[11-14]. 目前, miRNA已廣泛應用于疾病診斷、 治療、 藥物研發和農業等領域, 在RA的治療中也具有廣闊的應用前景. Han等[15]利用氟化修飾聚酰胺-胺樹枝狀大分子(FP)實現miR-23b高效、 穩定的遞送. 研究表明, FP/miR-23b能有效激活線粒體凋亡途徑以誘導巨噬細胞凋亡, 并通過靶向IKK-α,TAB2和TAB3抑制NF-κB信號通路, 從而降低促炎癥因子TNF-α,IL-1β和IL-6的表達(圖5(A)). 在佐劑誘導關節炎大鼠模型(AIA模型)和CIA小鼠模型中, 發現納米復合物能通過ELVIS效應滯留在患病關節處, 提高關節腔內 miR-23b 的水平. 在已給藥處理的動物體內, 滑膜組織浸潤的現象得到明顯抑制, 患病關節及血清內促炎因子的表達量均下降或恢復到正常水平(圖5(B)), 證明FP/miR-23b納米復合物具有減緩炎癥和抑制骨組織侵蝕的功能, 同時該納米復合物具有良好的生物相容性.

韓玲玲等[16]在初發RA患者miRNA表達中發現, 患者的miR-21表達水平降低, 并與轉錄激活因子3(STAT3)mRNA的表達呈負相關, 推測其可能參與RA的發生發展. Deng等[17]設計納米復合物用于介導miR-21和白細胞介素4(IL-4)的分層共遞送, 用以調控類風濕性關節炎中的免疫微環境. 結果表明, 具有抗炎效果的miR-21和IL-4通過協同作用抑制NF-κB信號通路以減輕炎癥, 并促使巨噬細胞極化為M2表型, 實現類風濕性關節炎的損傷組織修復. 該研究也為基于基因治療的聯合機制設計推進炎癥性疾病的治療提供了新思路.

Zhou等[18]在探究維生素D(VD)調節T細胞的分子機制中發現, VD可通過抑制miR-124介導的IL-6信號轉導以減輕Th17細胞分化, 在RA治療中具有指導意義. 為進一步增強抗RA活性, Yu等[19]將miR-124和酮洛芬(KMS)摻雜到PLGA微球(KMMS)中, 與僅擔載miR-124的微球相比, KMMS中miR-124誘導的受體激活劑NF-κB配體(RANKL)表達下調與KMS介導的鎮痛發揮協同作用, 對AIA大鼠有更好的治療效果(圖6(A)). 將酮洛芬更換為抗風濕藥物甲氨蝶呤(MTX)[20]后, 抗RA活性得到進一步改善, 該體系中miR-124可下調活化T細胞核因子1(NFATc1)的水平, 而納米復合物在AIA大鼠發炎關節中的蓄積則有效抑制了炎癥病癥(圖6(B)).

Ammari等[21]對miR-146a在RA中的作用機制進行了深入探究. 與健康小鼠相比, CIA小鼠的Ly6Chigh亞群和RA患者的類單核細胞亞群(CD14+CD16-)中miR-146a的表達顯著下調, 小鼠中miR-146a的耗竭促使關節炎嚴重惡化, 體外表現為破骨細胞分化, 體內則表現為骨侵蝕增加. 在CIA小鼠體內將miR-146a遞送至Ly6Chigh單核細胞, 可抑制miR-146a基因敲除小鼠所導致的骨組織侵蝕, 減少miR-146a+/+小鼠關節的致病性骨侵蝕, 但對炎癥并無顯著的治療效果. 該研究進一步證實經典單核細胞在RA發生發展中的關鍵作用以及miR-146a抑制關節炎的治療潛力.

Liu等[22]對miR-125在RA發展方面的影響進行了深入探討." miR-125與多種疾病的發生發展密切相關, 且被認為是一種重要的腫瘤抑制因子. 與正常組相比, RA大鼠模型滑膜組織中miR-125表達下調, PARP2表達上調(圖7); 熒光素酶報告基因檢測證實PARP2被miR-125直接抑制, 進而調節PI3K/Akt/mTOR信號通路的活性, 最終減弱RA的發病進程. Liu等[23]證明miR-125能靶向SPDEF抑制過敏性氣道炎癥中的杯狀細胞分化: Duroux-Richard等[24]證明miR-125可通過線粒體代謝和動力學控制單核細胞對炎癥的適應性. 以上研究均為深入理解RA的作用機制提供了前期基礎.

2 DNA治療

DNA 治療是指將含有特定治療基因的 DNA 序列導入患者體內, 通過表達治療性蛋白質或調節基因表達治療疾病的方法[25]. 在RA治療中, DNA 治療的原理主要是通過導入編碼抗炎細胞因子、 免疫調節分子或關節修復因子等基因[26]調節免疫系統、 減輕炎癥反應和促進關節修復.

2.1 質 粒

質粒是一種存在于細菌細胞質中的環狀雙鏈 DNA分子, 具有獨立于染色體之外進行自我復制的能力[27]. 在RA治療中, 攜帶治療基因的質粒導入患者體內后, 質粒使細胞表達相應的治療性產物, 從而發揮治療作用. Zhang等[28]構建了一種創新型IL-10質粒遞送體系, 該體系利用核定位信號肽(NLS)以及谷胱甘肽響應性的聚合物(bPEI-SS-PEG-T)為載體, 通過靜電相互作用形成bPEI-SS-PEG-T/NLS/DNA納米復合物, IL-10通過誘導哺乳動物雷帕霉素靶蛋白(mTOR)活性, 進而抑制糖酵解并維持線粒體的完整和功能. 同時, 該體系可正向調節線粒體精氨酸酶-1(Arg-2)的表達(圖8(A)), 導致線粒體呼吸增加以及琥珀酸和HIF-1α下調, 炎癥介質的減少進一步負向調節IL-1β的產生和糖酵解活性. 線粒體異常功能的消失和促炎巨噬細胞中氧化代謝的增加, 進一步強化了細胞抗炎表型(圖8(A))." 在動物水平上, 該納米復合物可實現在炎癥部位有效蓄積, 治療效果良好(圖8(B)), 為基于炎癥微環境角度出發構建RA治療和遞送體系提供了新的策略.

2.2 DNA折紙

DNA 折紙是一項基于DNA分子自組裝特性以構建納米結構的先進技術. 通過精心設計特定的DNA序列, 將DNA鏈折疊成如納米盒、 納米管和納米球等各種復雜的二維或三維結構[29]. DNA折紙具有高度的可編程性、 精確的結構控制能力以及良好的生物相容性, 在生物醫學領域具有廣闊的應用前景.

Li 等[30]以跨膜CD95受體為研究對象, 設計出納米級柔性可編程DNA折紙機器, 用于調節炎癥滑膜組織中活化免疫細胞的CD95致死誘導信號, 進而建立局部免疫耐受以實現對RA的逆轉(圖9). 該 DNA 折紙將CD95L陣列以二維六邊形模式呈現, 分子間距約為10 nm, 與跨膜CD95受體簇的幾何排列幾乎完全吻合(圖9(A)).

將i-motif DNA 序列進一步耦合至DNA折紙, 可響應pH觸發實現可逆的構象關閉和開關轉變. 所設計的DNA折紙在 pH值為中性條件下保持閉合構型, 而在弱酸性環境下轉變為開放構型, 從而暴露 CD95L陣列的六邊形圖案. 該顯著特征極大增強了炎癥滑膜組織(pH≈6.5)中活化免疫細胞CD95誘導死亡信號的選擇性激活, 同時又保留了肝臟中表達低水平CD95受體的健康肝細胞(pH≈7.4), 最大限度減少了肝毒性. 研究表明, 在CIA小鼠模型中, 柔性DNA折紙在炎癥滑膜組織中的活化免疫細胞中, 激發了強大且具有選擇性的CD95死亡誘導信號, 從而顯著緩解慢性炎癥, 促進局部免疫耐受, 改善關節損傷(圖9(B)~(C)). 因此, 該研究所開發的納米 DNA折紙可對細胞信號進行精確的空間控制, 拓展了配體-受體相互作用的理解, 為開發針對這些相互作用的藥理干預提供了一個有廣闊前景的平臺.

3 反義寡核苷酸

ASO是由十幾個到幾十個核苷酸組成的短鏈核酸分子, 通常為單鏈 DNA 或 RNA[31]. 它們的序列通過堿基配對原則與靶 mRNA的特定區域互補, 從而干擾基因表達.

ASO的長度既可保證其與靶mRNA的特異性結合, 又能避免被核酸酶快速降解. ASO的作用機制包括: 誘導RNase H介導的靶mRNA降解、 抑制mRNA翻譯和改變mRNA剪接等[32].

ASO不僅特異性高、 效率高、 設計性強及應用范圍廣, 且在感染性疾病和自身免疫性疾病中均表現出良好的治療效果. Makalish等[33]使用反義寡核苷酸Cytos-11進行RA的治療效果探究, 在大鼠模型中, Cytos-11可抑制關節炎癥狀, 表現為關節周圍腫脹減少, 外周血中TNF-α表達降低. 與經典抗風濕藥物阿達木單抗(Humira)相比, Cytos-11具有類似的療效, 兩種藥物在治療14 d后均表現出良好的治療效果(表1和圖10), 為基于ASO技術的RA治療藥物設計和評價提供了良好的研究基礎.

4 CRISPR/Cas9系統

基因編輯技術是一種對生物體基因組特定目標基因進行精確修飾的技術[34]. 目前廣泛應用的基因編輯技術主要是CRISPR/Cas9系統, 該系統由引導RNA(gRNA)和Cas9 蛋白組成. gRNA可特異性識別目標 DNA 序列, Cas9蛋白如分子剪刀, 在特定位置切割DNA雙鏈, 引發細胞自身的DNA修復機制. 這種修復機制主要有兩種方式: 1) 非同源末端連接, 這種方式通常會引入一些隨機插入或缺失突變; 2) 同源重組修復, 若提供合適的模板DNA, 則可實現對目標基因的精確編輯, 如插入特定的基因片段或進行點突變等[35]. 在基礎生命科學研究中, 基因編輯技術有助于科學家深入了解基因的功能和調控機制, 構建各種疾病模型; 在農業領域中, 該技術可用于培育優良品種, 提高農作物的產量和抗逆性[36]; 在醫學領域, 該技術有望成為多種遺傳疾病的治療方法, 如通過糾正致病基因突變治療囊性纖維化[37]和地中海貧血[38]等疾病, 或通過增強免疫系統對腫瘤細胞的識別和攻擊能力用于癌癥治療.

如圖11所示, Choi等[39]針對RA中的炎性細胞因子和通路, 利用CRISPR/Cas9基因編輯技術改造誘導多能干細胞(iPSCs), 構建了稱為“SMART”的軟骨干細胞. 在細胞中植入受IL-1調控以生產IL-1受體拮抗劑(IL-1Rα)的合成基因回路, 當炎癥發生時, 細胞內的基因回路會感知內源性IL-1細胞因子水平的變化而被激活, 從而分泌對應治療水平的IL-1Rα(圖11(A)). 但考慮到IL-1Rα藥物的半衰期較短, 在RA中的療效較差, 因此將干細胞接種至生物支架, 形成軟骨植入物后植入皮下, 以保證細胞在體內長期存活和分泌相應比例的藥物治療RA. 結果表明, 該軟骨構建體在體外和體內均表現為快速激活和恢復(圖11(B)), 在炎癥性關節炎的K/BxN小鼠模型中, 生物工程植入物在關節疼痛、 結構損傷及全身和局部炎癥中發揮功效, 減輕疾病的炎癥程度(圖11(C),(D)). 由此可見, 組織工程和合成生物學相結合有望通過定制設計的細胞, 響應動態變化的生物信號而表達治療性基因, 進而推進慢性病的治療.

Huang等[40]基于CRISPRa的基因編輯技術與過繼細胞療法相結合, 構建持久表達IL-10的工程化M2型巨噬細胞(Elite MΦs)用于RA治療(圖12). CRISPRa通過特定的核酸酶缺陷型Cas9(dCas9)和sgRNA特異性激活目標基因. Elite MΦs 表現出強大的抗炎能力, 代表了M2 MΦs 在體外的預激活狀態, 對M2誘導劑更敏感, 而對 M1 誘導劑具有抵抗能力. 結果表明, Elite MΦs可在炎癥部位蓄積, 通過恢復巨噬細胞M1/M2的平衡以緩解RA小鼠模型的炎癥、 滑膜增生和關節破壞.

5 脫氧核酶

脫氧核酶(DNAzyme, Dz)是一類具有催化活性的DNA分子[41], 它的發現打破了人們以為只有蛋白質才能作為酶分子發揮催化作用的觀念, 為生物化學領域開辟了新的研究方向[42]. Dz的催化作用基于其特定的DNA序列結構, 它通過與底物分子進行特異性的堿基互補配對結合, 然后在合適的環境條件下(如特定的離子濃度和pH值等)引發化學反應[43]. 以常見的具有RNA切割活性的Dz為例, 其作用機制為: 首先, 脫氧核酶通過自身特定的 DNA 序列與目標RNA分子進行互補配對, 形成一種類似酶-底物復合物結構; 其次, 在特定金屬離子(如鎂離子)的協助下, Dz發揮其催化活性, 對目標RNA分子進行切割, 將其斷裂成兩個或多個片段, 從而實現對RNA的修飾或降解作用[44]. Dz的特點包括穩定性高和可設計性強等, 在基因治療、 傳感器開發及核酸藥物研發等領域具有廣闊的應用前景.

Fahmy等[45]借助DNA分子Dz13敲低堿性區域亮氨酸拉鏈蛋白c-Jun, 抑制血管通透性和白細胞的跨內皮遷移. 在體外, Dz13消除了單核細胞-內皮細胞黏附, 消除了小鼠炎癥模型中的白細胞滾動、 黏附和外滲. 機制研究表明, Dz13 阻斷細胞因子誘導的內皮 c-Jun、 E-選擇素、 ICAM-1、 VCAM-1和血管內皮鈣黏蛋白表達, 最終減少RA小鼠模型中的關節腫脹、 炎性細胞浸潤和骨侵蝕(圖13).

6 其他基因治療策略

6.1 靶白蛋白水解嵌合體

PROTAC技術作為一種創新的蛋白質降解技術, 近年來在生物醫藥領域備受關注. PROTAC分子是一種雙功能小分子化合物, 由3部分構成:" 1) 靶蛋白結合配體, 它可特異性與目標蛋白質結合, 精準鎖定需降解的蛋白;" 2) E3泛素連接酶結合配體, 其作用是與細胞內的E3泛素連接酶相連, E3 泛素連接酶在泛素-蛋白酶體系統中負責將泛素分子連接到目標蛋白上;" 3) 連接鏈將二者連接形成完整的PROTAC分子. 當 PROTAC分子通過兩端配體分別與目標蛋白質和E3泛素連接酶結合后, 形成一個三元復合物. 在該復合物中, E3泛素連接酶將泛素分子依次連接到目標蛋白質上, 形成多聚泛素鏈, 若目標蛋白質被標記上足夠數量的泛素分子, 則會被細胞內的蛋白酶體識別并降解, 從而實現對目標蛋白質的靶向清除[46]. PROTAC技術的優勢包括高度靶向特異性和可調節性, 可應用于治療腫瘤[47]、 神經退行性疾病[48]以及炎癥性疾病[49]等.

6.2 治療性適配體

適配體是單鏈DNA或RNA, 可高親和力特異性結合其靶標, 通常通過指數富集(SELEX)技術對配體進行系統進化而開發[50]. 利用高結合力和易編程特性能將DNA或RNA偶聯至藥物載體表面, 用以改善治療或診斷目的的靶向特性. 此外, 一些適配體可與受體結合, 激活下游信號通路, 因此也可被用作治療劑, 如DNA適配體SL2B和C2NP等用于癌癥治療. 受上述發現的啟發, 已開發出多種用于類風濕關節炎治療的適配體, 如Cao等[51]利用微針作為載體經皮遞送抗DEK適配子(DTA), 可顯著降低炎性巨噬細胞中DEK的表達, 在CIA小鼠體內降低炎癥因子水平并抑制關節軟骨的損傷.

6.3 疫 苗

疫苗是目前預防疾病最有效、 最經濟的手段. 已開發了兩代疫苗: 第一代是減毒活疫苗和滅活疫苗; 第二代的主要代表是亞單位疫苗和重組基因疫苗. 隨著生物納米技術的發展, 第三代疫苗應運而生, 即DNA和mRNA疫苗[52], 其技術是將編碼某種抗原蛋白的病毒基因片段DNA或mRNA直接引入人體, 抗體蛋白由宿主細胞表達, 進一步調節全身免疫反應. DNA疫苗需轉錄成mRNA進行抗原蛋白表達. 與傳統疫苗相比, DNA疫苗更經濟穩定、 特異性高、 易于制備, 并可靈活編輯進而實現免疫療法的個性化治療[53]. Song等[54]構建CCOL2A1特異性耐受DNA疫苗(pcDNA-CCOL2A1)用于RA治療, 單次靜脈注射pcDNA-CCOL2A1可誘導CIA小鼠有效的免疫耐受, 疫苗的治療效果與 MTX 相當, 同時該疫苗未引起任何異常臨床癥狀或正常生理功能的副作用, 在最大劑量下不具有免疫原性. Zhao等[55]研究表明, pcDNA-CCOL2A1也可作為預防性疫苗, 接種該疫苗14 d后, CIA的發生率、 嚴重程度和發病顯著下降. 機制研究表明, 該疫苗通過降低抗Ⅱ型膠原免疫球蛋白G(IgG)的水平, 減少Th17和CD4/CD29 T細胞和細胞因子的數量, 表現出良好的保護效果. 以上研究充分證實了pcDNA-CCOL2A1 DNA 疫苗不僅在治療RA方面的巨大潛力, 同時能有效實現RA的預防.

除DNA疫苗外, mRNA疫苗可直接進行抗原蛋白表達, 在細胞質中發揮作用, 沒有基因組整合和突變的風險. 此外, mRNA的壽命較短, 避免了抗原蛋白的連續表達[56]. 目前mRNA疫苗用于RA的預防和治療尚未見文獻報道, 但Krienke等[57]已開發出治療實驗性自身免疫性腦脊髓炎的mRNA疫苗, 為自身免疫性疾病疫苗的開發提供了借鑒思路.

7 結論與展望

本文介紹的基因治療手段在治療RA中已有較多報道, 但目前該疾病的治療仍通過抑制炎癥以緩解腫脹和疼痛, 均未能從根源上解決RA的發生發展. 盡管RA的基因治療距臨床應用仍有較大距離, 但其在疾病治療中的原理決定了其未來應用有很大的可能性. 隨著基因編輯技術的進一步完善, 更精準、 高效和無脫靶效應的基因操作將成為可能, 為RA關鍵靶點的編輯及表達水平的調控提供了技術支撐. 此外, 將基因治療與現有的治療方法相結合, 既能從根本上糾正基因異常, 又能及時減輕患者的痛苦, 通過各自優勢的發揮取得更

理想的治療效果. 基因治療作為從根本上治療疾病的策略, 有望成為未來RA及其他自身免疫性疾病治療的新策略.

參考文獻

[1] DI MATTEO A," BATHON J M," EMERY P. Rheumatoid Arthritis [J]. Lancet," 2023," 402:" 2019-2033.

[2] ZHANG F," JONSSON A H," NATHAN A," et al. Deconstruction of Rheumatoid Arthritis Synovium Defines Inflammatory Subtypes [J]. Nature," 2023," 623:" 616-624.

[3] MOAZZAM M J," ZHANG M J," HUSSAIN A," et al. The Landscape of Nanoparticle-Based siRNA Delivery and Therapeutic Development [J]. Molecular Therapy:" The Journal of the American Society of Gene Therapy," 2024," 32(2):" 284-312.

[4] HO W," ZHANG X Q," XU X Y. Biomaterials in siRNA Delivery:" A Comprehensive Review [J]. Advanced Healthcare Materials," 2016," 5(21):" 2715-2731.

[5] KUMARI A," KAUR A," AGGARWAL G. The Emerging Potential of siRNA Nanotherapeutics in Treatment of Arthritis [J]. Asian Journal of Pharmaceutical Sciences," 2023," 18(5):" 100845-1-100845-23.

[6] LIU X S," GUO R," HUO S C," et al. CaP-Based Anti-inflammatory HIF-1α siRNA-Encapsulating Nanoparticle for Rheumatoid Arthritis Therapy [J]. Journal of Controlled Release," 2022," 343:" 314-325.

[7] GUO L," ZHONG S H," LIU P," et al. Radicals Scavenging MOFs Enabling Targeting Delivery of siRNA for Rheumatoid Arthritis Therapy [J]. Small," 2022," 18(27):" e2202604-1-e2202604-14.

[8] NASRA S," BHATIA D," KUMAR A. Targeted Macrophage Re-programming:" Synergistic Therapy with Methotrexate and RELA siRNA Folate-Liposome in RAW264.7 Cells and Arthritic Rats [J]. Advanced Healthcare Materials," 2024," 13(22):" e2400679-1-e2400679-14.

[9] KIM M J," PARK J S," LEE S J," et al. Notch1 Targeting siRNA Delivery Nanoparticles for Rheumatoid Arthritis Therapy [J]. Journal of Controlled Release," 2015," 216:" 140-148.

[10] TAVASOLIAN F," ABDOLLAHI E," REZAEI R," et al. Altered Expression of MicroRNAs in Rheumatoid Arthritis [J]. Journal of Cellular Biochemistry, "2018," 119(1):" 478-487.

[11] XIE L," XU J H. Role of MiR-98 and Its Underlying Mechanisms in Systemic Lupus Erythematosus [J]. The Journal of Rheumatology," 2018," 45(10):" 1397-1405.

[12] SENOUSY M A," HELMY H S," FATHY N," et al. Association of MTMR3 rs12537 at miR-181a Binding Site with Rheumatoid Arthritis and Systemic Lupus Erythematosus Risk in Egyptian Patients [J]. Scientific Reports," 2019," 9(1):" 12299-1-12299-11.

[13] JANG S I," TANDON M," TEOS L," et al. Dual Function of miR-1248 Links Interferon Induction and Calcium Signaling Defects in Sjgren’s Syndrome [J]. eBioMedicine," 2019," 48:" 526-538.

[14] IWAMOTO N," VETTORI S," MAURER B," et al. Downregulation of miR-193b in Systemic Sclerosis Regulates the Proliferative Vasculopathy by Urokinase-Type Plasminogen Activator Expression [J]. Annals of the Rheumatic Diseases," 2016," 75(1):" 303-310.

[15] HAN H B," XING J K," CHEN W Q," et al. Fluorinated Polyamidoamine Dendrimer-Mediated miR-23b Delivery for the Treatment of Experimental Rheumatoid Arthritis in Rats [J]. Nature Communications," 2023," 14(1):" 944-1-944-20.

[16] 韓玲玲," 管春平," 周謙," 等. MiR-21在托法替布治療中重度活動性類風濕性關節炎中的作用研究 [J]. 臨床醫學進展," 2022," 12(12):" 11269-11275. (HAN L L," GUAN C P," ZHOU Q," et al. The Research of the Role of MiR-21 in the Treatment of Moderate and Severe Active Rheumatoid Arthritis with Tofacitinib [J]. Advances in Clinical Medicine," 2022," 12(12):" 11269-11275.)

[17] DENG Y K," ZHOU Y," LIANG Q J," et al. Inflammation-Instructed Hierarchical Delivery of IL-4/miR-21 Orchestrates Osteoimmune Microenvironment toward the Treatment of Rheumatoid Arthritis [J]. Advanced Functional Materials," 2021," 31(33):" 2101033-1-2101033-14.

[18] ZHOU L," WANG J L," LI J R," et al. 1,25-Dihydroxyvitamin D3 Ameliorates Collagen-Induced Arthritis via Suppression of Th17 Cells through miR-124 Mediated Inhibition of IL-6 Signaling [J]. Frontiers in Immunology," 2019," 10:" 178-1-178-12.

[19] YU C H," ZHANG X Y," SUN X S," et al. Ketoprofen and MicroRNA-124 Co-loaded Poly(lactic-co-glycolic acid) Microspheres Inhibit Progression of Adjuvant-Induced Arthritis in Rats [J]. International Journal of Pharmaceutics," 2018," 552(1/2):" 148-153.

[20] HAO F," LEE R J," ZHONG L H," et al. Hybrid Micelles Containing Methotrexate-Conjugated Polymer and Co-loaded with Microrna-124 for Rheumatoid Arthritis Therapy [J]. Theranostics," 2019," 9(18):" 5282-5297.

[21] AMMARI M," PRESUMEY J," PONSOLLES C," et al. Delivery of miR-146a to Ly6Chigh Monocytes Inhibits Pathogenic Bone Erosion in Inflammatory Arthritis [J]. Theranostics," 2018," 8(21):" 5972-5985.

[22] LIU K," ZHANG Y G," LIU L," et al. miR-125 Regulates PI3K/Akt/mTOR Signaling Pathway in Rheumatoid Arthritis Rats via PARP2 [J]. Bioscience Reports," 2019," 39(1):" BSR20180890-1-BSR20180890-11.

[23] LIU Z E," CHEN X," WU Q L," et al. miR-125b Inhibits Goblet Cell Differentiation in Allergic Airway Inflammation by Targeting SPDEF [J]. European Journal of Pharmacology," 2016," 782:" 14-20.

[24] DUROUX-RICHARD I," ROUBERT C," AMMARI M," et al. MiR-125b Controls Monocyte Adaptation to Inflammation through Mitochondrial Metabolism and Dynamics [J]. Blood," 2016," 128(26):" 3125-3136.

[25] CRING M R," SHEFFIELD V C. Gene Therapy and Gene Correction:" Targets," Progress," and Challenges for Treating Human Diseases [J]. Gene Therapy," 2022," 29(1/2):" 3-12.

[26] KAUFMANN K B,nbsp; BüNING H," GALY A," et al. Gene Therapy on the Move [J]. EMBO Molecular Medicine," 2013," 5(11):" 1642-1661.

[27] SHIMAMURA M," MORISHITA R. Naked Plasmid DNA for Gene Therapy [J]. Current Gene Therapy," 2011," 11(6):" 433.

[28] ZHANG X T," LIU Y H," LIU W," et al. Macrophage-Hitchhiking Interleukin-10 Plasmid DNA Delivery System Modulates Rheumatoid Arthritis Microenvironment via the Re-polarization of Macrophages [J]. Nano Today," 2024," 54:" 102068-1-102068-22.

[29] MARTYNENKO I V," RUIDER V," DASS M," et al. DNA Origami Meets Bottom-Up Nanopatterning [J]. ACS Nano," 2021," 15(7):" 10769-10774.

[30] LI L," YIN J," MA W," et al. A DNA Origami Device Spatially Controls CD95 Signaling to Induce Immune Tolerance in Rheumatoid Arthritis [J]. Nature Materials," 2024," 23(7):" 993-1001.

[31] BENNETT C F. Therapeutic Antisense Oligonucleotides Are Coming of Age [J]. Annual Review of Medicine," 2019," 70:" 307-321.

[32] BENNETT C F," SWAYZE E E. RNA Targeting Therapeutics:" Molecular Mechanisms of Antisense Oligonucleotides as a Therapeutic Platform [J]. Annual Review of Pharmacology and Toxicology," 2010," 50:" 259-293.

[33] MAKALISH T P," GOLOVKIN I O," OBEREMOK V V," et al. Anti-rheumatic Effect of Antisense Oligonucleotide Cytos-11 Targeting TNF-α Expression [J]. International Journal of Molecular Sciences," 2021," 22(3):" 1022-1-1022-14.

[34] BAK R O," GOMEZ-OSPINA N," PORTEUS M H. Gene Editing on Center Stage [J]. Trends in Genetics:" TIG," 2018," 34(8):" 600-611.

[35] WANG H F," LA RUSSA M," QI L S. CRISPR/Cas9 in Genome Editing and Beyond [J]. Annual Review of Biochemistry," 2016," 85:" 227-264.

[36] CHEN K L," WANG Y P," ZHANG R," et al. CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture [J]. Annual Review of Plant Biology," 2019," 70:" 667-697.

[37] SCHWANK G," KOO B K," SASSELLI V," et al. Functional Repair of CFTR by CRISPR/Cas9 in Intestinal Stem Cell Organoids of Cystic Fibrosis Patients [J]. Cell Stem Cell," 2013," 13(6):" 653-658.

[38] MEISEL R," ALTSHULER D," CAPPELLINI M D," et al." CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia [J]. The New England Journal of Medicine," 2021," 384(23):" 252-260.

[39] CHOI Y R," COLLINS K H," SPRINGER L E," et al. A Genome-Engineered Bioartificial Implant for Autoregulated Anticytokine Drug Delivery [J]. Science Advances," 2021," 7(36):" eabj1414-1-eabj1414-12.

[40] HUANG Y H," WANG Z Q," ZHONG C X," et al. CRISPRa Engineered Elite Macrophages Enable Adoptive Cell Therapy for Rheumatoid Arthritis [J]. The Innovation Medicine," 2024," 2(1):" 100050-1-100050-12.

[41] JOUHA J," XIONG H. DNAzyme-Functionalized Nanomaterials:" Recent Preparation," Current Applications," and Future Challenges [J]. Small," 2021," 17(51):" e2105439-1-e2105439-23.

[42] WANG M," LIU Z," LIU C," et al. DNAzyme-Based Ultrasensitive Immunoassay:" Recent Advances and Emerging Trends [J]. Biosensors amp; Bioelectronics," 2024," 251:" 116122-1-116122-20.

[43] PARRA-MENSES V," SILVA-GALLEGUILLOS V," CEPEDA-PLAZA M. Exploring the Catalytic Mechanism of the 10-23 DNAzyme:" Insights from Ph-Rate Profiles [J]. Organic amp; Biomolecular Chemistry," 2024," 22(33):" 6833-6840.

[44] XU S X," LIU Y," ZHOU S H," et al. DNA Matrix Operation Based on the Mechanism of the DNAzyme Binding to Auxiliary Strands to Cleave the Substrate [J]. Biomolecules," 2021," 11(12):" 1797-1-1797-16.

[45] FAHMY R G," WALDMAN A," ZHANG G S," et al. Suppression of Vascular Permeability and Inflammation by Targeting of the Transcription Factor c-Jun [J]. Nature Biotechnology," 2006," 24(7):" 856-863.

[46] LI X," SONG Y C. Proteolysis-Targeting Chimera (PROTAC) for Targeted Protein Degradation and Cancer Therapy [J]. Journal of Hematology amp; Oncology," 2020," 13(1):" 50-1-50-14.

[47] GAO J," HOU B, "ZHU Q W," et al. Engineered Bioorthogonal POLY-PROTAC Nanoparticles for Tumour-Specific Protein Degradation and Precise Cancer Therapy [J]. Nature Communications," 2022," 13(1):" 4318-1-4318-14.

[48] LEE J H," SUNG K W," BAE E J," et al. Targeted Degradation of α-Synuclein Aggregates in Parkinson’s Disease Using the AUTOTAC Technology [J]. Molecular Neurodegeneration," 2023," 18(1):" 41-1-41-21.

[49] FERGUSON F M. PROTACs Reach Clinical Development in Inflammatory Skin Disease [J]. Nature Medicine," 2023, "29(12):" 3006-3007.

[50] KINGHORN A B," FRASER L A," LANG S L," et al. Aptamer Bioinformatics [J]. International Journal of Molecular Sciences," 2017," 18(12):" 2516-1-2516-22.

[51] CAO J," SU J J," AN M C," et al. Novel DEK-Targeting Aptamer Delivered by a Hydrogel Microneedle Attenuates Collagen-Induced Arthritis [J]. Molecular Pharmaceutics," 2021," 18(1):" 305-316.

[52] LIU M A. A Comparison of Plasmid DNA and mRNA as Vaccine Technologies [J]. Vaccines," 2019," 7(2):" 37-1-37-20.

[53] IURESCIA S," FIORETTI D," FAZIO V M," et al. Epitope-Driven DNA Vaccine Design Employing Immunoinformatics Against B-Cell Lymphoma:" A Biotech’s Challenge [J]. Biotechnology Advances," 2012," 30(1):" 372-383.

[54] SONG X Q," LIANG F," LIU N," et al. Construction and Characterization of a Novel DNA Vaccine That Is Potent Antigen-Specific Tolerizing Therapy for Experimental Arthritis by Increasing CD4+CD25+Treg Cells and Inducing Th1 to Th2 Shift in Both Cells and Cytokines [J]. Vaccine," 2009," 27(5):" 690-700.

[55] ZHAO X," LONG J," LIANG F," et al. Vaccination with a Novel Antigen-Specific Tolerizing DNA Vaccine Encoding CCOL2A1 Protects Rats from Experimental Rheumatoid Arthritis [J]. Human Gene Therapy," 2019," 30(1):" 69-78.

[56] LORENTZEN C L," HAANEN J B," MET ?," et al. Clinical Advances and Ongoing Trials on mRNA Vaccines for Cancer Treatment [J]. The Lancet Oncology," 2022," 23(10):" e450-e458.

[57] KRIENKE C," KOLB L," DIKEN E," et al. A Noninflammatory mRNA Vaccine for Treatment of Experimental Autoimmune Encephalomyelitis [J]. Science," 2021," 371:" 145-153.

(責任編輯: 單 凝)

猜你喜歡
類風濕關節炎
藏藥內服外浴配合甲氨蝶呤治療類風濕關節炎80例臨床觀察
藏藥五味甘露湯聯合小葉毛球蕕藥浴治療類風濕關節炎療效觀察
類風濕關節炎蒙醫藥治療現狀與展望
類風濕關節炎的診斷及其藥物治療研究進展
中西醫結合治療類風濕關節炎的臨床療效觀察
康復護理在類風濕關節炎治療中的應用分析
今日健康(2016年12期)2016-11-17 14:30:20
益賽普治療類風濕關節炎25例療效觀察
益賽普聯合甲氨蝶呤治療類風濕關節炎的臨床效果觀察
探究類風濕關節炎相關實驗室指標的診斷性能評價
英夫利西單抗治療類風濕關節炎的療效初步評定及護理
主站蜘蛛池模板: 亚洲国产天堂久久综合| 毛片久久久| 国产福利免费在线观看| 精品视频在线一区| 92午夜福利影院一区二区三区| 久久国产精品夜色| 国产不卡网| 欧美国产日韩另类| av在线无码浏览| 日本高清免费一本在线观看 | 白丝美女办公室高潮喷水视频| 国产色网站| 香蕉精品在线| 久久综合成人| 国产视频久久久久| 国产区在线观看视频| 91蝌蚪视频在线观看| 99re在线视频观看| 一级看片免费视频| 亚洲一区毛片| 秘书高跟黑色丝袜国产91在线 | 亚洲视频免| 精品国产成人a在线观看| 婷婷伊人五月| 国产丝袜第一页| 欧美精品综合视频一区二区| 欧美全免费aaaaaa特黄在线| 91毛片网| 国产亚洲精久久久久久无码AV | 亚洲国产精品VA在线看黑人| 乱系列中文字幕在线视频 | 国产成人在线小视频| 国产美女无遮挡免费视频网站| 真实国产精品vr专区| 中文字幕av一区二区三区欲色| 亚洲婷婷丁香| 欧美在线一级片| 99视频免费观看| 97综合久久| 久久人搡人人玩人妻精品| 高清无码一本到东京热| 久久久久久久蜜桃| 99激情网| 四虎永久免费网站| 夜夜操国产| 国产在线精彩视频论坛| 亚洲第一av网站| 最新国产在线| 99青青青精品视频在线| 欧美精品一区在线看| 香蕉在线视频网站| 免费观看精品视频999| 最新精品久久精品| 亚洲综合亚洲国产尤物| 亚洲天堂日韩在线| 成年人久久黄色网站| 日韩国产黄色网站| 国产91精选在线观看| 夜夜高潮夜夜爽国产伦精品| 99热这里只有免费国产精品 | 国产午夜在线观看视频| 中文天堂在线视频| av一区二区人妻无码| 国产成人精品亚洲77美色| 91蜜芽尤物福利在线观看| 伊人久久青草青青综合| 毛片久久网站小视频| 亚洲福利一区二区三区| 国产办公室秘书无码精品| 亚洲精品午夜无码电影网| 亚洲品质国产精品无码| 国产超碰在线观看| 亚洲无线国产观看| 老司机午夜精品视频你懂的| 亚洲成aⅴ人片在线影院八| 91久久天天躁狠狠躁夜夜| 天堂中文在线资源| 91国内在线视频| 69av在线| 美女被躁出白浆视频播放| 欧美日本在线播放| 亚洲欧洲日韩综合色天使|