



摘"要"本文先給出《數學通報》問題2731的證明,并對結果加強推廣,最后依據不等式的結構特征舉例幾道變式.
關鍵詞"問題2731;不等式;證明;推廣
題目"(《數學通報》2023年第7期問題2731)在△ABC中,求證:sin2A1+cos2B+cos2C+sin2B1+cos2C+cos2A+sin2C1+cos2A+cos2B≤32①.
筆者對①式從證法、加強、推廣、變式四個方面進行探究,撰寫成文,分享給大家.
1.不等式①的證明
證法1"不妨設0<C<π2,則cosC>0,所以sin2A+sin2B+sin2C=32-12(cos2A+cos2B+cos2C)=32-12[2cos(A+B)cos(A-B)+2cos2C-1]=2-cos2C+cosCcos(A-B)≤2-cos2C+cosC=-(cosC-12)2+94≤94.
于是,由權方和不等式可得sin2A1+cos2B+cos2C+sin2B1+cos2C+cos2A+sin2C1+cos2A+cos2B=sin2A3-sin2B-sin2C+sin2B1-sin2C-sin2A+sin2C1-sin2A-sin2B≤sin2A34+sin2A+sin2B34+sin2B+sin2C34+sin2C=3-3(13+4sin2A+13+4sin2B+13+4sin2C)≤3-3·(1+1+1)29+4(sin2A+sin2B+sin2C)≤3-279+9=32.
證法2"由證法1知sin2A+sin2B+sin2C≤94.由射影定理和柯西不等式有a2=(bcosC+ccosB)2≤(b2+c2)(cos2C+cos2B),從而cos2B+cos2C≥a2b2+c2,于是1+cos2B+cos2C≥a2+b2+c2b2+c2,同理可得1+cos2C+cos2A≥a2+b2+c2c2+a2,1+cos2A+cos2B≥a2+b2+c2a2+b2,所以sin2A1+cos2B+cos2C+sin2B1+cos2C+cos2A+sin2C1+cos2A+cos2B≤∑a2(b2+c2)4R2(a2+b2+c2)=∑a2(b2+c2)4R2(a2+b2+c2)=(a2+b2+c2)2-(a4+b4+c4)4R2(a2+b2+c2)
≤(a2+b2+c2)2-13(a2+b2+c2)24R2(a2+b2+c2)=a2+b2+c26R2=23(sin2A+sin2B+sin2C)≤23×94=32.
證法3"由三角公式得cos2A+cos2B+cos2C=12(3+cos2A+cos2B+cos2C)=12[3+2cos(A+B)cos(A-B)+2cos2C-1]=cos2C-cos(A-B)cosC+1=[cosC-12cos(A-B)]2+1-14cos2(A-B)≥1-14cos2(A-B)≥34.
記cos2A+cos2B+cos2C=x,則x≥34.
于是,利用權方和不等式可得sin2A1+cos2B+cos2C+sin2B1+cos2C+cos2A+sin2C1+cos2A+cos2B=(sin2A1+cos2B+cos2C-1)+(sin2B1+cos2C+cos2A-1)+(sin2C1+cos2A+cos2B-1)+3=3-(cos2A+cos2B+cos2C)(11+cos2B+cos2C+11+cos2C+cos2A+11+cos2A+cos2B)≤3-9(cos2A+cos2B+cos2C)3+2(cos2A+cos2B+cos2C)=3-9x3+2x=32+3(3-4x)6+4x≤32.
證法4"由證法3知cos2A+cos2B+cos2C≥34.原不等式等價于1-cos2A1+cos2B+cos2C-1+1-cos2B1+cos2C+cos2A-1+1-cos2C1+cos2A+cos2B-1≤32-3cos2A+cos2B+cos2C1+cos2B+cos2C+cos2A+cos2B+cos2C1+cos2C+cos2A+cos2A+cos2B+cos2C1+cos2A+cos2B≥3211+cos2B+cos2C+11+cos2C+cos2A+11+cos2A+cos2B≥32(cos2A+cos2B+cos2C).
由權方和不等式知11+cos2B+cos2C+11+cos2C+cos2A+11+cos2A+cos2B≥93+2(cos2A+cos2B+cos2C)故只需證93+2(cos2A+cos2B+cos2C)≥32(cos2A+cos2B+cos2C)cos2A+cos2B+cos2C≥34,該不等式成立,故不等式①成立.
證法5"由證法3知cos2A+cos2B+cos2C≥34.由權方和不等式有
1sin2A+1cos2A+cos2B+cos2C≥4sin2A+cos2A+cos2B+cos2C=41+cos2B+cos2C,
所以11+cos2B+cos2C≤14(1sin2A+1cos2A+cos2B+cos2C),
所以sin2A1+cos2B+cos2C≤14+sin2A4(cos2A+cos2B+cos2C),同理可得另外兩式.故sin2A1+cos2B+cos2C+sin2B1+cos2C+cos2A+sin2C1+cos2A+cos2B
≤14+sin2A4(cos2A+cos2B+cos2C)+14+sin2B4(cos2A+cos2B+cos2C)+14+sin2C4(cos2A+cos2B+cos2C)=34+sin2A+sin2B+sin2C4(cos2A+cos2B+cos2C)=12+34(cos2A+cos2B+cos2C)≤32.
2.不等式①的加強
由sin2A+sin2B+sin2C≤94,筆者對不等式①進行加強,得到
命題1"在△ABC中,有sin2A1+cos2B+cos2C+sin2B1+cos2C+cos2A+sin2C1+cos2A+cos2B≤23(sin2A+sin2B+sin2C).
證明"原不等式等價于a21+cos2B+cos2C+b21+cos2C+cos2A+c21+cos2A+cos2B≤23(a2+b2+c2).
由證法2知cos2B+cos2C≥a2b2+c2,所以a21+cos2B+cos2C≤a21+a2b2+c2=a2b2+a2c2a2+b2+c2,所以a21+cos2B+cos2C+b21+cos2C+cos2A+c21+cos2A+cos2B≤2(a2b2+b2c2+c2a2)a2+b2+c2.
由常見不等式x2+y2+z2≥xy+yz+zx,得(x+y+z)2≥3(xy+yz+zx),
所以a2b2+b2c2+c2a2≤13(a2+b2+c2)2,
所以a21+cos2B+cos2C+b21+cos2C+cos2A+c21+cos2A+cos2B≤23(a2+b2+c2).
3.不等式①的推廣
對不等式①中的常量“1”進行推廣,可以得到
命題2"在△ABC中,k≥1,則sin2Ak+cos2B+cos2C+sin2Bk+cos2C+cos2A+sin2Ck+cos2A+cos2B≤92(2k+1).
證明"由sin2A+sin2B+sin2C≤94,結合權方和不等式可得∑sin2Ak+cos2B+cos2C=∑sin2Ak+2-sin2B-sin2C≤∑sin2Ak+2-(94-sin2A)
≤∑sin2Ak-14+sin2A=3-(14-k)∑1k-14+sin2A≤3-(14-k)93(k-14)+∑sin2A≤3-(14-k)93(k-14)+94=92(2k+1).
4.不等式①的變式
對不等式中的次數、三角函數名稱或結構進行改變,可以得到下列變式.
命題3"在△ABC中,有sinA1+cos2B+cos2C+sinB1+cos2C+cos2A+sinC1+cos2A+cos2B≤3.
證明"1+cos2B+cos2C=sin2A+cos2A+cos2B+cos2C,則原不等式等價于∑sinAsin2A+cos2A+cos2B+cos2C≤3.
又cos2A+cos2B+cos2C≥34,所以∑sinAsin2A+cos2A+cos2B+cos2C≤∑sinAsin2A+34,故只需證明∑sinAsin2A+34≤3.
因為A∈(0,π),所以sinA>0,所以sin2A+34≥234sin2A=3sinA,則sinAsin2A+34≤33.
所以sinA1+cos2B+cos2C+sinB1+cos2C+cos2A+sinC1+cos2A+cos2B≤3.
命題4"在△ABC中,有∑sinA1+cos2B+cos2C≤322.
證明"由證法2知cos2B+cos2C≥a2b2+c2,結合正弦定理得cos2B+cos2C≥sin2Asin2B+sin2C,
于是∑sinA1+cos2B+cos2C≤∑sinA1+sin2Asin2B+sin2C=∑sinAsin2B+sin2Csin2A+sin2B+sin2C.
因為∑sin2A≤94,由柯西不等式得
(∑sinAsin2B+sin2C)2≤∑sin2A∑(sin2B+sin2C)=2(∑sin2A)2≤92∑sin2A,
即∑sinAsin2B+sin2C≤322∑sin2A,所以∑sinA1+cos2B+cos2C≤322.
命題5"在△ABC中,有sinA1-sinBsinC+sinB1-sinCsinA+sinC1-sinAsinB≤33.
證明"因為sinBsinC=-12[cos(B+C)-cos(B-C)]≤-12[cos(B+C)-1]=12(1+cosA),
所以1-sinBsinC≥1-12(1+cosA)=12(1-cosA)=sin2A2,
故1-sinBsinC≥sinA2,sinA1-sinBsinC≤2cosA2.
同理可得sinB1-sinCsinA≤2cosB2,sinC1-sinAsinB≤2cosC2.
以上三式相加得sinA1-sinBsinC+sinB1-sinCsinA+sinC1-sinAsinB≤2(cosA2+cosB2+cosC2).
又熟知cosA2+cosB2+cosC2≤332,所以sinA1-sinBsinC+sinB1-sinCsinA+sinC1-sinAsinB≤33.
對不等式①繼續(xù)變式,可得下述結論
命題6"(2011年第七屆北方數學邀請賽試題)在△ABC中,有11+cos2A+cos2B+11+cos2B+cos2C+11+cos2C+cos2A≤2.
命題7"在△ABC中,有11+sin2A+sin2B+11+sin2B+sin2C+11+sin2C+sin2A≥65.
命題8"在△ABC中,有11+cot2A+cot2B+11+cot2B+cot2C+11+cot2C+cot2A≤95.
命題9"在銳角△ABC,有13+tan2A+tan2B+13+tan2B+tan2C+13+tan2C+tan2A≤13.
仿照命題2,又可將上述四個命題推廣為
命題10"在△ABC中,λ≥1,則∑1λ+cos2A+cos2B≤62λ+1.
命題11"在△ABC中,λ≥0,則∑1λ+sin2A+sin2B≥62λ+3.
命題12"在△ABC中,λ≥13,則∑1λ+cot2A+cot2B≤93λ+2.
命題13"在銳角△ABC中,λ≥3時,有∑1λ+tan2A+tan2B≤3λ+6.
囿于篇幅,上述結論的證明留給有興趣的讀者.