

摘要:基于新課程理念,旨在提升學生的核心素養,教師選取合適的教學內容,幫助學生開展深度學習.本文中以“圓中概念及性質的復習”為例,開展深度學習的教學實踐.
關鍵詞:深度學習;新課標
《義務教育數學課程標準(2022年版)》(以下簡稱《新課標》)指出,課程目標以學生發展為本,以核心素養為導向,數學教育承載著落實立德樹人根本任務,實施素質教育功能.而深度學習是我國全面深化課程改革,落實核心素養的重要途徑.至于如何幫助學生實現深度學習,筆者結合深度學習理論,以“圓中概念及性質的復習”為例,開展了教學實踐.
1 深度學習的內涵
深度學習,是指在教師引領下,學生圍繞著具有挑戰性的學習主題,全身心積極參與,體驗成功,獲得發展的有意義的學習過程.在這個過程中,學生掌握學科的核心知識,理解學習的過程,把握學科的本質及思想方法,形成積極的內在學習動機、積極的態度與正確的價值觀,成為既具獨立性、批判性、創造性,又有合作精神,基礎扎實的優秀的學習者,成為未來社會實踐的主人.
2 深度學習在課堂的實施
深度學習倡導單元教學.依據新課標與教材,確定培養學科核心素養的教學內容,制定學習目標,設計教學活動,開展課堂教學,進行學習評價.單元教學有以下四個重要環節:(1)選擇單元學習主題;(2)確定單元學習目標;(3)設計單元學習活動;(4)開展持續性評價.
深度學習可以借助問題串,激發學生的深度思考,落實數學核心素養,真正提升學生學習能力.深度學習可以促進學生的思維從低階發展至高階,可以促進學生逐漸能夠像專家一樣思考問題、解決問題.深度學習還可以借助一題多解,引導學生從不同角度進行思考,發展求異思維,總結解題規律,并比較不同解法中哪一種是最優解,增強學生思維的發散性、創造性,提升學生的分析問題與解決問題能力,最終實現提升學生的核心素養.
“圓”這一章是在小學學過的圓和初中學習直線圖形有關性質基礎上進一步的學習內容,在這一章系統研究圓的概念和性質,以及圓中有關的角、點與圓、直線與圓、圓與正多邊形之間的位置和數量關系;另外,這一章還是進一步學習數學以及其他科學的重要基礎.圓的許多性質比較集中地反映了事物內部量變與質變,一般與特殊矛盾的對立統一關系.可以說,“圓”集平面幾何之大成,它概念多,定理多,綜合性強,靈活性強,難度大,是每年中考必考的內容.筆者就圓的相關內容分成幾個小單元教學,其中“圓中概念及性質的復習”為第一課時.
3 深度學習的案例分析
基于上述理論,筆者設計了“圓中概念及性質的復習”,并實施了教學.
3.1 課堂設計思路
本節課先通過問題串的方法,在圓中不斷添加線段,用開放式的提問“你想到什么結論?”并回答“依據是什么?”,促使學生有條理地記憶相關概念、定理以及了解它們之間的聯系,并掌握用“形”的方法來記憶,從而建構知識網絡.接著出示題目(2019年廣州中考第23題),學生先獨立思考,再在全班分享解法,最后師生一起歸納總結圓中添加輔助線的一般方法,提升方程思想、轉化思想等思想方法.
3.2 教學環節
環節1 回顧舊知,構建網絡
問題1 如圖1,AB是⊙O的直徑,D是圓上異于A,B的點,連AD,AB,BD,你能想到什么結論?依據是什么?
(預設答案:∠BDA=90°,依據是直徑所對的圓周角是直角.)
問題2 如圖2,過圓心O作OC⊥BD,交BD于點E,交弧BD于點C,你能想到什么結論?依據是什么?
(預設答案:BE=ED,BC=CD,依據是垂徑定理.)
問題3 如圖3,連BC,CD,OD,你能想到什么結論?依據是什么?
(預設答案:∠BOC=∠COD,依據是“等弧所對的圓心角相等”;BC=CD,依據是“同圓或等圓中,相等的圓心角所對的弦相等”;等等.)
問題4 如圖4,連AC,你能想到什么結論?依據是什么?
(預設答案:∠BOC=2∠BAC,依據是“同圓或等圓中,同弧所對的圓周角等于圓心角的一半”;∠BAC=∠CAD,依據是“同圓或等圓中,等弧所對的圓周角相等”;等等.)
這是一個有生長力的圖形,通過不斷添加條件,不斷增加設問“你能想到什么結論?”學生通過觀察、分析、聯想,復習了圓的有關概念和性質.不同層次的學生有不同的發現,各有所得,在相互補充中,碰撞出思維的火花,課堂氣氛活躍.
環節2 一題多解,發展思維
例題 如圖5,⊙O的直徑AB=10,AC=8,連接BC.
(1)尺規作圖,作弦CD(點D與點B不重合),使CD=CB,連AD;
(2)在(1)所作的圖中,
求四邊形ABCD的周長.
本題第(1)問,作圖略.
對于第(2)問,學生先自主思考,再全班分享解法.學生經過思考,有以下幾種做法.
方法1:垂徑定理,勾股定理.(如圖6)
方法2:補全圖形,相似三角形.(如圖7)
方法3:補全圖形,等面積法.(如圖8)
方法4:旋轉,角平分線性質.(如圖9)
方法5:旋轉,三角形全等的性質.(如圖10)
本環節學生積極思考,全身心投入,樂于與大家分享解法,課堂上氣氛活躍.本例題難度適中,學生通過解答出此題,體驗到成功的喜悅,尤其同伴的掌聲,讓他們獲得前進的動力.一題多解,培養了學生“換個角度看問題”的能力.另外,在學生講解不完善時,教師及時給與鼓勵和點撥,其他同學也補充,最終獲得正確的結果.在學生講解不正確時,鼓勵學生提出質疑,并一起討論,大大提高了學生的質疑精神和批判精神.
環節3 方法提煉,總結提升
筆者引導學生歸納:
(1)圓中輔助線的一般作法:
①連半徑,構建等腰三角形;②有直徑,連弦,構建直角三角形;③作垂徑,構建垂徑三角形.
(2)幾何圖形中添加輔助線的原則:①集中條件;
②補全圖形;③構造條件.
環節4 布置作業,應用遷移
(1)分層作業(略);
(2)提升作業(略).
4 幾點思考
4.1 好的任務是學生深度學習的必要條件
好的學習任務可以將學生帶入學習情境,使學生積極主動分析問題、解決問題,從而提升學生學習熱情,提升核心素養.如何根據學生現有的水平選取富有挑戰性的學習任務,需要教師了解學生的學習規律和特點,洞察學生學習中存在的問題,做到對教材及現實有深度的把握.
4.2 師生、生生間的深度互動是深度學習的關鍵環節
深度學習的場所,是多人互動、平等對話、共同思考的場所.教師給學生適時引導或適時質疑,引發學生多角度思考問題;同伴年齡相仿,容易引起共鳴,可以較好地鍛煉傾聽、思考與合作的能力.這需要教師營造平等對話的環境.
《新課標》確立以核心素養為導向的課程目標,而深度學習是落實核心素養的重要途徑.