999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

新瓊寡糖延緩西番蓮果實采后衰老及其與呼吸代謝的關系

2025-02-22 00:00:00林育釗羅振宇陳東曉汪瑩陳蓮陳洪彬張珅
果樹學報 2025年2期

摘" " 要:【目的】研究新瓊寡糖對西番蓮果實采后衰老的延緩作用及其對呼吸代謝的影響。【方法】以黃果西番蓮為研究對象,對采后果實進行180 mg·L-1新瓊寡糖(NAOS)與蒸餾水(對照組)浸泡15 min處理,置于(25 ± 1)℃、相對濕度85%下貯藏18 d,測定腐爛率、硬度、失重率、果皮水分含量、果肉可溶性固形物(TSS)和可滴定酸(TA)含量、呼吸強度、呼吸代謝途徑關鍵酶[磷酸己糖異構酶(PGI)、琥珀酸脫氫酶(SDH)、葡萄糖-6-磷酸脫氫酶(G-6-PDH)和6-磷酸葡萄糖酸脫氫酶(6-PGDH)]活性、呼吸末端氧化酶[細胞色素C氧化酶(CCO)、抗壞血酸氧化酶(AAO)和多酚氧化酶(PPO)]活性、煙酰胺腺嘌呤二核苷酸激酶(NADK)活性、吡啶核苷酸[煙酰胺腺嘌呤二核苷酸(NAD)及其還原型(NADH)、煙酰胺腺嘌呤二核苷酸磷酸(NADP)及其還原型(NADPH)]含量等的變化。【結果】與對照組對比,NAOS處理可使西番蓮果實維持較高的硬度、果皮水分含量、果肉TSS和TA含量,以及較低的腐爛率和失重率。NAOS處理可推遲并抑制西番蓮果實的呼吸高峰,使果皮保持較低的PGI、SDH、CCO、AAO和PPO活性、NAD和NADH含量,較高的G-6-PDH+6-PGDH總活性、NADK活性、NADP和NADPH含量。【結論】NAOS處理通過調控呼吸代謝途徑,即削弱糖酵解與三羧酸循環,增強磷酸戊糖途徑功能,降低電子傳遞鏈水平,進而推遲呼吸高峰、減少能量與底物的消耗,最終減緩西番蓮果實腐爛發生、維持采后品質。NAOS處理可通過調節采后西番蓮果實的生理代謝,推遲其后熟衰老,有效控制西番蓮果實的衰敗。

關鍵詞:西番蓮果實;新瓊寡糖;采后衰老;呼吸代謝;呼吸代謝途徑

中圖分類號:S667.9 文獻標志碼:A 文章編號:1009-9980(2025)02-0401-11

Neoagaro-oligosaccharide delays the postharvest decay of passion fruit and its relationship with the respiratory metabolism

LIN Yuzhao1, 3, LUO Zhenyu2, CHEN Dongxiao2, WANG Ying2, CHEN Lian4, CHEN Hongbin1, 3*, ZHANG Shen2*

(1Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae/Quanzhou Normal University, Quanzhou 362000, Fujian, China; 2College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, Fujian, China; 3College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, Fujian, China; 4School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, Fujian, China)

Abstract: 【Objective】 The passion (Passiflora caerulea L.) fruit is a typical tropical and subtropical fruit native to Brazil. In China, passion fruit is widely cultivated in Guangxi, Fujian, Hainan, Guangdong and Yunnan Provinces. The passion fruit has unique flavor and contains a variety of nutrients with dietary therapy effect. However, as a climacteric fruit, the harvested passion fruit is highly sensitive to ethylene and thereby the respiration climacteric can be activated very soon, leading to rapid postharvest ripening, senescence, and serious decay, such as pericarp shrinking, disease outbreak, and mechanical injury-induced browning. These quality deteriorations will greatly reduce the shelf-life and commercial value of the fruits. Therefore, it is of great significance to develop effective postharvest technology to retard the postharvest ripening and senescence and enhance the storability of postharvest passion fruit. The utilization of marine biological resources is drawing lots of attention currently in the field of agri-food preservation. The oligosaccharides obtained from seaweed is a promising substance for maintaining fruit quality, but to date little information is known about neither its regulation mechanism underlying the quality-keeping effect, nor its effects on postharvest passion fruit. On the other hand, as the key factor in postharvest ripening and senescence, respiration is so crucial to fruit physiological change that should be given the first and foremost attention when considering quality variation. Also, respiration is an integrated reflection of a series of metabolic processes known as the hub of matter and energy metabolism. The respiratory metabolic pathways involving material metabolism of the harvested fruit include embden-meyerhof-parnas (EMP), tricarboxylic acid (TCA) cycle and pentose phosphate pathway (PPP), and the pathways involving energy production include electron transport chain (ETC). Besides, pyridine nucleotides act as cofactors in these pathways and thereby can be seen as the indicators of the balance in respiratory metabolic pathways. Therefore, in this study, the effects of neoagaro-oligosaccharide (NAOS) solution dipping treatment on the quality of postharvest passion fruit were investigated, with specific regards to its regulatory mechanism on the respiratory metabolism, aiming to provide technical reference and theoretical basis for retarding the postharvest decay and extending the shelf-life of the passion fruit. 【Methods】 The yellow passion fruits were harvested at commercial maturity and the fruits selected for test were divided into two groups. One group of fruits was soaked in 180 mg·L-1 NAOS solution for 15 min and the other one was soaked in distilled water as control. The fruits were then air dried and stored at (25±1) ℃ and 85% relative humidity for 18 days. During the storage, the changes of the fruit decay rate, respiration rate, firmness, weight loss rate, pericarp moisture content, and the contents of total soluble solids (TSS) and titrable acid (TA) in pulp were investigated to evaluate the effect of NAOS treatment on fruit quality. Furthermore, the enzyme activities of the respiratory metabolic pathways were assayed, such as phosphohexose isomerase (PGI) in EMP, succinate dehydrogenase (SDH) in TCA cycle, glucose-6-phosphate dehydrogenase (G-6-PDH) and 6-phosphogluconate dehydrogenase (6-PGDH) in PPP, cytochrome C oxidase (CCO) in ETC and other terminal oxidases including ascorbic acid oxidase (AAO) and polyphenol oxidase (PPO). Besides, the contents of pyridine nucleotides including nicotinamide adenine dinucleotide (NAD) and its reduced form (NADH), and nicotinamide adenine dinucleotide phosphate (NADP) and its reduced form (NADPH) and the activity of involving enzyme, NAD kinase (NADK), were determined. 【Results】 Compared with the control group, NAOS-treated fruits could maintain higher firmness, pericarp moisture content, and the contents of pulp TSS and TA during the storage, with lower weight loss rate and decay rate; moreover, NAOS treatment delayed the respiration climacteric of the postharvest passion fruits, lowered the activities of PGI, SDH, CCO, AAO and PPO, as well as the contents of NAD and NADH, but elevated the levels of G-6-PDH+6-PGDH, NADK, NADP and NADPH. 【Conclusion】 The NAOS treatment could regulate the respiratory metabolism of the harvested passion fruits via alleviating the EMP-TCA pathway and ETC, and enhancing the PPP, which jointly contributed to retarded respiration climacteric and reduced substrate consumption, leading to the slower postharvest ripeness and senescence, and thereby the decay occurrence was inhibited and the quality was maintained. Therefore, the NAOS treatment could be an effective handling to control the postharvest decay of the passion fruits via regulating its physiological activities.

Key words: Passion fruit; Neoagaro-oligosaccharide; Postharvest decay; Respiratory metabolism; Respiratory metabolic pathways

西番蓮(Passiflora caerulea L.)果實俗稱百香果,是一種特色的熱帶、亞熱帶果品,在中國廣西、福建、海南、廣東、云南等地廣泛栽培[1-3]。西番蓮果實富含多種營養物質,如維生素、酚類、有機酸、礦物質等[1,4-5],具有抗氧化、降血壓、降血脂和抗腫瘤等功效[6-7],且因風味獨特、香氣濃郁而深受消費者的喜愛[6]。然而,因西番蓮果實為呼吸躍變型果實,采后呼吸強度高,后熟衰老速度快,果實極易發生腐爛、皺縮等衰敗現象,進而影響品質和商業價值[1,4]。因此,通過采后處理減緩果實品質敗壞對西番蓮的保鮮流通具有重要意義。

呼吸代謝是果實重要的生理代謝活動,躍變型果實采后成熟衰老和品質變化尤其與呼吸代謝密切相關[8-10]。呼吸強度及糖酵解(EMP)、三羧酸(TCA)循環、磷酸戊糖途徑(PPP)等不同呼吸代謝途徑的水平均可影響果實采后品質[10-12]。另外,呼吸代謝途徑的改變也與呼吸代謝相關酶酶活性、吡啶核苷酸含量等有關[9]。有研究報道,過氧化氫處理[9]、病原菌侵染[11]等能導致果實采后較低水平的PPP以及較高水平的EMP和TCA循環,從而造成果實品質劣變。相反地,三磷酸腺苷[8]、酸性電解水[10]、棓酸丙酯[13]等處理可保持果實采后較高水平的PPP以及較低水平的EMP和TCA循環,從而維持果實品質。

海藻寡糖是由海藻多糖降解得到的低聚合度活性物質[14-15],主要有瓊膠寡糖、巖藻寡糖、褐藻寡糖及卡拉膠寡糖。其中,瓊膠寡糖是由瓊二糖為重復單位連接形成,包含新瓊寡糖(Neoagaro-oligosaccharide,NAOS)和瓊寡糖[16]。有研究發現,海藻寡糖具有安全性高、成本低、水溶性好、生物相容性高等優點,兼具提高植物抗氧化能力和抗逆性及促進生長調節等作用[14-16]。相關研究表明,褐藻寡糖處理能提高草莓果實的采后品質,延長其貨架期[17]。另外,藍炎陽等[18]報道,海藻寡糖處理可保持蜜柚可溶性固形物(TSS)、總糖、有機酸等物質的含量,提高果實硬度,延長其貯藏期。Hou等[19]研究報道,瓊膠寡糖處理可推遲櫻桃番茄果實的呼吸高峰,延緩維生素C與可滴定酸(TA)含量的下降,從而減緩品質劣變。然而,目前海藻寡糖維持果實采后品質的作用機制尚不清楚,關于海藻寡糖應用于西番蓮果實采后保鮮的研究報道也較少。因此,筆者在本研究中采用龍須菜降解所得的海藻寡糖——NAOS溶液對西番蓮果實進行采后處理,探究NAOS溶液處理減緩西番蓮果實衰老的作用及其與呼吸代謝的關系,以期為利用海藻寡糖維持果實采后品質、延長保鮮期提供理論依據。

1 材料和方法

1.1 材料與處理

成熟度為約八成熟的欽蜜9號西番蓮果實,采摘于福建省熱帶作物科學研究所(福建漳州),采后運到實驗室,將大小、色澤均一,無病害、無損傷的健康果實清洗后備用。

NAOS溶液由自然資源部第三海洋研究所(福建廈門)提供,主要成分為深海火色桿菌Flammeovirga sp. OC4降解龍須菜所得的四糖和六糖的混合溶液,有效質量濃度為6 g·L-1。該溶液為淡褐色透明水溶液,有輕微發酵腥臭味,常溫下理化性狀穩定,加水稀釋至處理所用質量濃度(180 mg·L-1)后近乎無色無味。

在預試驗中,選用0(對照)、60、120、180、240 mg·L-1 NAOS溶液浸泡處理西番蓮果實15 min,晾干后包裝于聚乙烯薄膜袋(袋兩側各有9個3 mm微孔)中,在(25 ± 1)℃、相對濕度85%條下貯藏18 d,定期取樣測定果實腐爛率。結果發現,在貯藏第18天時,不同處理組的果實腐爛率分別為:32.38%(對照)>27.62%(120 mg·L-1)>26.67%(60 mg·L-1)>24.76%(240 mg·L-1)>17.14%(180 mg·L-1)。因180 mg·L-1 NAOS處理最能有效減緩西番蓮果實采后衰敗,所以本研究中使用該質量濃度處理。

將挑選出的果實分為處理組和對照組,每組3次重復。(1)NAOS處理組:180 mg·L-1 NAOS溶液浸泡果實15 min;(2)對照組(Control):蒸餾水浸泡果實15 min。隨后將兩組的果實均取出晾干、裝入打孔聚乙烯薄膜袋(15個/袋),置于(25 ± 1)℃、相對濕度85%條件下貯藏18 d,貯藏期內定期(每3 d)隨機取樣測定相關指標;另外,在貯藏1 d時,還測定呼吸強度。

1.2 測定方法

1.2.1 腐爛率 以果實腐爛率評價其衰敗程度。取一袋西番蓮果實,參照Li等[20]的方法評價果實采后腐爛率。

1.2.2 硬度 參照Hao等[21]的方法測定果實硬度,結果以N表示。

1.2.3 失重率 參照Lin等[22]的方法測定果實失重率,結果以百分比表示。

1.2.4 果皮水分含量 參照羅振宇等[23]的方法,采用直接干燥法測定西番蓮果皮水分含量,結果以百分比表示。

1.2.5 果肉TSS和TA含量 從西番蓮果實中取出果肉,經研磨后過濾。參照Lin等[22]的方法測定果實果肉的TSS和TA含量,結果以百分比表示。

1.2.6 呼吸強度 參照Zhang等[8]和Liu等[10]的方法測定西番蓮果實呼吸強度,結果用(以CO2計)mg·kg-1·h-1表示。

1.2.7 呼吸代謝途徑相關酶活性 參照Lin等[11]和Sun等[12]的方法測定西番蓮果皮呼吸代謝途徑關鍵酶(包括PGI、SDH及G-6-PDH+6-PGDH)的活性。此外,參照Lin等[11]和Sun等[12]的方法測定西番蓮果皮CCO、AAO和PPO等呼吸末端氧化酶活性。上述結果均以U·mg-1表示。

1.2.8 NADK活性 參照Lin等[9,13]的方法測定西番蓮果皮NADK活性,結果以U·mg-1表示。

1.2.9 吡啶核苷酸含量 參照Lin等[11]和Sun等[12]的方法測定西番蓮果皮吡啶核苷酸(NAD、NADH、NADP和NADPH)含量,結果用μmol·g-1表示。

1.3 數據處理

本研究中測定的指標均進行3次重復,結果以平均值±標準誤表示。利用SPSS軟件(版本號:26)的方差分析與Duncan檢驗對所獲得的數據進行統計及分析。在數據圖中,用*、**分別表示在同一貯藏時間NAOS處理組和對照組間具有顯著(p<0.05)、極顯著(p<0.01)的差異。

2 結果與分析

2.1 果實腐爛率

腐爛率的高低可反映果實采后品質的水平。由圖1可知,對照果實腐爛率在貯藏0~3 d均為0,隨后迅速升高。然而,NAOS處理組果實在貯藏0~9 d未出現腐爛,在貯藏9~18 d腐爛率逐漸上升。貯藏6~18 d期間NAOS處理組果實的腐爛率均低于對照組,并在9~18 d期間差異達到極顯著(p<0.01)。在貯藏18 d時,NAOS處理組果實的腐爛率僅為對照組的52.93%。

2.2 果實硬度和失重率

果實質地是反映躍變型果實后熟過程的重要指標。由圖2-A可知,對照組和NAOS處理組果實的硬度從貯藏0 d 時的69.61 N分別逐漸下降至貯藏18 d時的19.68 N和40.59 N。在貯藏6~18 d期間,NAOS處理組果實的硬度高于對照組,且在貯藏12 d和18 d時差異為極顯著(p<0.01)。

果實失重主要由蒸騰作用造成的水分流失以及呼吸消耗所導致[22]。由圖2-B可知,在貯藏期內西番蓮果實失重率上升。在3~18 d期間,NAOS處理組果實的失重率均低于對照組,其中在貯藏6~18 d差異極顯著(p<0.01),在18 d時處理組為對照組的58.86%。

2.3 果皮水分含量

皺縮是西番蓮果實最顯著的采后品質劣變特征之一,果皮失水是引起皺縮的主要原因,并加速果實耐貯性下降和衰敗進程[23]。由圖3可知,對照組果實果皮水分含量在貯藏0~18 d期間快速降低。NAOS處理組果實果皮水分含量在貯藏0~12 d期間變化較小,12~15 d快速降低,15~18 d無明顯變化。在貯藏18 d時處理組與對照組的差異為極顯著(p<0.01)。以上結果表明,在貯藏期間NAOS處理組果實可保持較高的果皮水分含量。

2.4 果肉TSS和TA含量

TSS和TA含量是影響果實食用品質的直接因素,其含量在采后的變化深受呼吸代謝等生理活動影響。由圖4-A可知,對照組西番蓮果實TSS含量在貯藏0~3 d呈上升趨勢而在貯藏3~18 d下降。NAOS處理組果實TSS含量在貯藏0~6 d與對照組相近,而在貯藏9~18 d處理組果實TSS含量雖緩慢下降但均顯著(p<0.05)高于對照組。由圖4-B可知,對照組果實TA含量在貯藏0~3 d迅速降低,隨后持續下降,從貯藏0 d的4.89%下降到貯藏18 d的1.26%。NAOS處理組果實TA含量在貯藏期內緩慢降低,在3~18 d期間均高于對照組,并且在6~18 d差異達到極顯著(p<0.01)水平。

2.5 果實呼吸強度

呼吸是采后果實重要的生理代謝活動,高呼吸強度會導致底物消耗增多,促進果實衰敗,縮短貨架期[22]。由圖5可知,對照組呼吸強度在貯藏0~1 d快速上升,并在1 d達到呼吸高峰(154.46 mg·kg-1·h-1),隨后下降;而NAOS處理組果實呼吸強度在貯藏0~6 d上升,6 d時達到呼吸峰值(99.96 mg·kg-1·h-1),隨后波動變化。NAOS處理組果實呼吸強度在貯藏1 d時極顯著(p<0.01)低于對照,在貯藏3 d時顯著(p<0.05)低于對照。

2.6 果皮呼吸代謝途徑關鍵酶活性

PGI和SDH分別是EMP和TCA循環的關鍵酶,而G-6-PDH與6-PGDH是PPP的關鍵酶,它們活性的高低可反映各呼吸代謝途徑水平的變化[10-11]。由圖6-A可知,西番蓮果實PGI活性在貯藏0~3 d略有降低,3~12 d快速上升,隨后迅速下降。與對照組相比,NAOS處理組果皮PGI活性維持在較低水平,并且在貯藏3、12、18 d差異顯著(p<0.05),在貯藏6~9 d和15 d差異為極顯著(p<0.01)。

由圖6-B可知,對照組和NAOS處理組果實的果皮SDH活性均在貯藏0~3 d升高,隨后下降。在同一貯藏時間內NAOS處理組的果皮SDH活性均低于對照組,并在6~18 d達到極顯著(p<0.01)差異水平。

如圖6-C所示,對照組果實果皮G-6-PDH和6-PGDH總活性在貯藏0~3 d快速升高,3~18 d逐漸下降。NAOS處理組果皮G-6-PDH和6-PGDH總活性在貯藏0~3 d升高較快,3~18 d整體呈下降趨勢。在同一貯藏時間內NAOS處理組果皮G-6-PDH和6-PGDH總活性均高于對照組,并且貯藏3 d時差異顯著(p<0.05),6~18 d期間差異極顯著(p<0.01)。

2.7 果皮NADK活性

NADK能催化NAD磷酸化生成NADP,它們分別參與不同的呼吸代謝途徑[11]。由圖7可知,對照組果實果皮NADK活性在貯藏0~3 d降低,3~12 d呈現上升趨勢,12~15 d下降后有所上升。NAOS處理組果皮NADK活性在貯藏0~3 d較快上升,3~9 d下降,9~18 d上升。在相同貯藏時間,NAOS處理組果皮NADK活性均高于對照組,并且在貯藏3~6 d和15~18 d達到極顯著(p<0.01)差異水平,在12 d時達到顯著(p<0.05)差異水平。在貯藏18 d,NAOS處理組果皮NADK活性是對照組的1.60倍。

2.8 果皮吡啶核苷酸含量

NAD(H)與NADP(H)等吡啶核苷酸是參與調節呼吸代謝的重要輔助因子[10,13]。由圖8-A可知,對照組果實果皮NAD含量于貯藏0~9 d快速升高,9~18 d整體略有下降;而NAOS處理組果皮NAD含量在貯藏0~3 d變化較小,3~9 d快速升高,隨后快速降低。與對照組相比,在相同貯藏時間內NAOS處理組果皮NAD含量低于對照組,并在貯藏3~6 d和15~18 d達到極顯著(p<0.01)差異水平。

如圖8-B所示,對照組和NAOS處理組果皮NADP含量在貯藏期內不斷降低,分別從0 d 時的11.22 μmol·g-1下降至18 d時的7.19 μmol·g-1和8.18 μmol·g-1。與對照果實對比,在相同貯藏時間內NAOS處理組果皮NADP含量高于對照組,且在貯藏15~18 d達到極顯著(p<0.01)差異水平。

由圖8-C可知,對照組果實的果皮NADH含量于貯藏0~6 d快速上升,6~9 d下降,9~12 d快速升高,隨后逐漸降低。NAOS處理組果皮NADH含量在貯藏0~6 d略有下降,6~15 d快速上升,15~18 d快速下降。在3~18 d期間NAOS處理組果皮NADH含量低于對照組,且在貯藏6 d和12 d達到極顯著差異(p<0.01)水平,在貯藏9 d時達到顯著差異(p<0.05)水平。

由圖8-D可知,對照組果實果皮NADPH含量在貯藏0~3 d下降,3~15 d整體呈上升趨勢,15~18 d快速降低。NAOS處理組果皮NADPH含量在貯藏0~6 d快速上升,6~9 d降低,在9~12 d迅速升高,隨后維持在較高水平。在貯藏3~12 d和18 d時,NAOS處理組果皮NADPH含量極顯著(p<0.01)高于對照組,在15 d時顯著(p<0.05)高于對照組。

2.9 果皮呼吸末端氧化酶活性

作為呼吸末端氧化酶,CCO在電子傳遞鏈(ETC)細胞色素途徑中起著關鍵作用,其活性可反映ETC運轉水平[10]。由圖9-A可知,兩組果實果皮CCO活性均在貯藏0~3 d快速上升,在3 d達到峰值(對照組為217.53 U·mg-1,NAOS處理組為153.63 U·mg-1),隨后不斷降低。在整個貯藏期內NAOS處理組果實果皮CCO活性低于對照組,并在3 d和9~15 d達到極顯著(p<0.01)差異水平,18 d時達到顯著(p<0.05)差異水平。

如圖9-B所示,對照組果皮AAO活性在貯藏0~6 d迅速上升,6~18 d快速下降。NAOS處理組果皮AAO活性在貯藏0~9 d逐漸升高,9~18 d快速下降。在貯藏6~18 d期間NAOS處理組果皮AAO活性均低于對照組,且在貯藏6~15 d差異為極顯著(p<0.01),18 d時差異為顯著(p<0.05)。

如圖9-C所示,對照組和NAOS處理組果實果皮PPO活性在貯藏期間均呈現整體上升的趨勢。在相同貯藏時間內NAOS處理組果皮PPO活性均低于對照組,并在貯藏3 d和9 d達到極顯著(p<0.01)差異水平,在12~18 d達到顯著(p<0.05)差異水平。

3 討 論

呼吸作用是躍變型果實采后成熟衰老的標志之一,也是果實組織獲取能量用于維持各種生理代謝的主要方式[24]。然而,呼吸代謝伴隨著能量消耗和營養物質降解,高呼吸強度可促進果實成熟和衰老,加速果實品質變化[10,25]。筆者在本研究中發現,與對照組相比,NAOS處理可延緩西番蓮果實呼吸高峰,同時降低其峰值。NAOS處理組果實還保持了較高的果實硬度、果皮水分含量、果肉TSS和TA含量,較低的失重率和腐爛率。筆者的試驗結果證明,NAOS處理可維持西番蓮果實的采后品質、減緩果實失重和腐爛等衰老現象發生。推測原因是,NAOS處理降低西番蓮果實呼吸水平,一方面可能延緩果實后熟衰老,減少因組織結構、成分變化和代謝活動引起的水分流失,從而保持了果皮水分含量,維持果實硬度,減少皺縮;另一方面可能減少糖和有機酸等底物消耗,從而維持果肉TSS和TA等呈味物質的水平。類似地,Liu等[10]研究表明,酸性電解水處理減緩龍眼果肉自溶發生、穩定果實品質與其保持較低的呼吸強度有關。Lin等[22]研究發現,殼聚糖處理可降低龍眼果實呼吸強度,保持較高的果肉營養物質含量,進而維持其品質。

EMP、TCA循環與PPP是主要的呼吸代謝途徑,與果實采后品質有關[10-12]。其中,EMP是最基本的呼吸途徑,它將葡萄糖氧化為丙酮酸,隨后進入TCA循環,而TCA循環與能量供給有關。PPP不僅是植物中NADPH的主要來源,也為許多合成反應提供中間產物,也與植物應對外界脅迫有關[26]。呼吸代謝途徑關鍵酶可調節上述呼吸代謝途徑及呼吸強度,進而影響果實采后品質[13,27-28]。在EMP中,PGI可將葡萄糖-6-磷酸轉化成果糖-6-磷酸,PGI活性高低可評價EMP水平高低[29]。SDH是TCA循環的關鍵酶,可將琥珀酸脫氫轉化成延胡索酸[9,30]。另外,G-6-PDH和6-PGDH是PPP的關鍵酶,其酶活性可評價PPP水平[9-10]。此外,NAD(H)、NADP(H)等吡啶核苷酸也能調節呼吸代謝[9,13]。NAD在NADK的作用下被磷酸化成NADP[13]。NAD(H)含量與EMP、TCA循環水平有關,而NADP(H)含量將影響PPP水平[13]。本研究發現,與對照組對比,NAOS處理組具有延后的且較低的呼吸高峰及較低的腐爛率,同時也保持較低的PGI、SDH活性和NAD(H)含量,較高的G-6-PDH+6-PGDH、NADK活性和NADP(H)含量。因此,NAOS處理降低西番蓮果實的PGI、SDH活性而提升G-6-PDH+6-PGDH總活性,也提高果實的NADK活性、NADP(H)含量而降低NAD(H)含量,提高了PPP水平而削弱了EMP與TCA循環水平,從而延緩果實呼吸高峰而減輕其采后品質變化,進而減緩腐爛發生。類似地,Lin等[13]研究發現,棓酸丙酯處理減緩龍眼果肉發生自溶與其保持較高水平的PPP、較低水平的EMP和TCA循環有關。Li等[29]研究表明,海藻糖處理提高蘋果的G6PDH活性而降低PGI、SDH活性,進而提高PPP水平而降低EMP、TCA循環水平,從而保持果實品質。

CCO、AAO及PPO是重要的呼吸末端氧化酶[12-13],它們影響著ETC,間接反映電子傳遞效率和呼吸代謝水平[10,31]。筆者在本研究中發現,與對照組相比,NAOS處理組在貯藏0~18 d保持較低CCO和PPO活性,在貯藏6~18 d保持較低AAO活性。同時,NAOS處理組具有較低的呼吸高峰與腐爛率。因此推測,NAOS處理通過降低呼吸末端氧化酶水平而削弱電子傳遞效率及呼吸代謝,推移呼吸高峰,有利于減少能量與底物的消耗,進而穩定果實品質而延緩衰老發生。類似地,Lin等[27]研究發現,較低活性的AAO和CCO是減緩龍眼發生果皮褐變的關鍵因素。Song等[32]研究報道,一氧化氮處理延緩桃果實冷害發生與其具有較低的CCO活性有關。

4 結 論

NAOS處理降低了西番蓮果實的PGI和SDH活性、NAD(H)含量,提高了NADK和G-6-PDH+6-PGDH活性、NADP(H)含量,從而保持較低的EMP和TCA循環水平,并且減緩電子傳遞,提高PPP水平,從而減少能量及營養物質的消耗。NAOS處理可調節西番蓮果實采后呼吸代謝途徑,抑制呼吸高峰,延緩后熟和衰老,從而減少水分散失和物質消耗,維持果實質量、質地、呈味物質和外觀等品質特征,減緩果實衰老。本研究表明,NAOS具有調控采后西番蓮果實生理、延緩其品質敗壞的作用,這為海藻寡糖在果蔬采后保鮮和生理調控方面的應用提供了理論依據。

參考文獻References:

[1] 林育釗,陳蕾伊,陳佳怡,蔣璇靚,鄭金水,陳洪彬. ε-聚賴氨酸對西番蓮果實采后病害與抗病物質代謝的影響[J]. 食品科學,2024,45(3):142-149.

LIN Yuzhao,CHEN Leiyi,CHEN Jiayi,JIANG Xuanjing,ZHENG Jinshui,CHEN Hongbin. Effect of ε-poly-L-lysine on postharvest diseases and disease-resistant substance metabolism in passion fruits[J]. Food Science,2024,45(3):142-149.

[2] 林育釗,陳蕾伊,陳洪彬,鄭金水,蔣璇靚,楊菁美. 4種包裝材料對西番蓮果實貯藏效果的影響[J]. 食品與機械,2024,40(3):134-140.

LIN Yuzhao,CHEN Leiyi,CHEN Hongbin,ZHENG Jinshui,JIANG Xuanjing,YANG Jingmei. Effects of four packaging materials on preservation of passion flower (Passiflora caerulea L.) fruit[J]. Food amp; Machinery,2024,40(3):134-140.

[3] 郭欣,林育釗,曾玲珍,林靜穎,余星星,林河通. 不同濃度殼聚糖處理對采后西番蓮果實耐貯性和貯藏品質的影響[J]. 熱帶作物學報,2020,41(8):1665-1673.

GUO Xin,LIN Yuzhao,ZENG Lingzhen,LIN Jingying,YU Xingxing,LIN Hetong. Effects of different concentrations of chitosan treatment on storability and storage quality of passion fruit postharvest[J]. Chinese Journal of Tropical Crops,2020,41(8):1665-1673.

[4] 陳果,林育釗,郭欣,林河通. 西番蓮采后品質劣變及貯藏保鮮技術研究進展[J]. 亞熱帶植物科學,2020,49(4):323-328.

CHEN Guo,LIN Yuzhao,GUO Xin,LIN Hetong. Research advances in quality deterioration and storage technologies of harvested passion fruit[J]. Subtropical Plant Science,2020,49(4):323-328.

[5] YOU M,DUAN X Y,LI X,LUO L J,ZHAO Y,PAN H H,GONG W L,YANG L R,XIANG Z,LI G F. Effect of 1-methylcyclopropene combined with chitosan-coated film on storage quality of passion fruit[J]. Sustainable Chemistry and Pharmacy,2022,27:100679.

[6] WANG H L,CHEN H B,LIN Y,LI M L,LIU Q Q,LIN Y Z,JIANG X J,CHEN Y H. Insights into the isolation,identification,and biological characterization analysis of and novel control strategies for Diaporthe passiflorae in postharvest passion fruit[J]. Journal of Fungi,2023,9(10):1034.

[7] DO CARMO SANTOS J T,PETRY F C,DE CASTRO TOBARUELA E,MERCADANTE A Z,GLORIA M B A,COSTA A M,LAJOLO F M,HASSIMOTTO N M A. Brazilian native passion fruit (Passiflora tenuifila Killip) is a rich source of proanthocyanidins,carotenoids,and dietary fiber[J]. Food Research International,2021,147:110521.

[8] ZHANG S,LIN H T,LIN Y F,LIN Y X,HUNG Y C,CHEN Y H,WANG H,SHI J. Energy status regulates disease development and respiratory metabolism of Lasiodiplodia theobromae (Pat.) Griff. amp; Maubl.-infected longan fruit[J]. Food Chemistry,2017,231:238-246.

[9] LIN Y X,LIN H T,CHEN Y H,WANG H,LIN M S,RITENOUR M A,LIN Y F. The role of ROS-induced change of respiratory metabolism in pulp breakdown development of longan fruit during storage[J]. Food Chemistry,2020,305:125439.

[10] LIU Q Q,XIE H L,CHEN Y H,LIN M S,HUNG Y C,WANG H,FAN Z Q,LIN Y F,LIN H T. Acidic electrolyzed oxidizing water delayed the breakdown occurrence in pulp of fresh longan by regulating the metabolisms of respiratory and energy[J]. Postharvest Biology and Technology,2023,205:112531.

[11] LIN L J,LIN H T,CHEN Y,ZHANG H L,WANG X Q,LIN M S,CHEN Y H,WANG H,FAN Z Q,LIN Y F. Respiratory and energy metabolisms participate in the disease occurrence of fresh Chinese olive caused by Pestalotiopsis microspora[J]. Postharvest Biology and Technology,2023,205:112514.

[12] SUN B L,KUANG X Y,LIN H T,LIN M S,CHEN Y Z,ZENG L Z,LIN Y F,CHEN Y H,WANG H,FAN Z Q. The role of respiratory metabolism in chilling injury development of Chinese olive fruit during cold storage[J]. Postharvest Biology and Technology,2023,205:112489.

[13] LIN Y X,LIN Y F,LIN M S,CHEN L,LI H,LIN H T. Propyl gallate postharvest treatment improves the storability of longans by regulating the metabolisms of respiratory and disease-resistance substances[J]. Postharvest Biology and Technology,2023,206:112556.

[14] 余勁聰. 海藻寡糖在農業領域的應用研究進展[J]. 南方農業學報,2016,47(6):921-927.

YU Jincong. Research progress in application of seaweed oligosaccharides in agriculture[J]. Journal of Southern Agriculture,2016,47(6):921-927.

[15] LI L,JIANG J J,YAO Z,ZHU B W. Recent advances in the production,properties and applications of alginate oligosaccharides - a mini review[J]. World Journal of Microbiology amp; Biotechnology,2023,39(8):207.

[16] 萬艷玲,溫超,龔林鋒,曾翰庭,王成鵬. 新瓊寡糖對多頭切花月季‘愛麗絲’保鮮效果的影響[J]. 安徽農業科學,2023,51(17):154-157.

WAN Yanling,WEN Chao,GONG Linfeng,ZENG Hanting,WANG Chengpeng. Effects of Neoagaro-oligosaccharides on preservation of spray cut rose ‘Alice’[J]. Journal of Anhui Agricultural Sciences,2023,51(17):154-157.

[17] BOSE S K,HOWLADER P,JIA X C,WANG W X,YIN H. Alginate oligosaccharide postharvest treatment preserve fruit quality and increase storage life via abscisic acid signaling in strawberry[J]. Food Chemistry,2019,283:665-674.

[18] 藍炎陽,高劍龍,曾潤穎,王少峰. 海藻寡糖對琯溪蜜柚保鮮品質的影響[J]. 福建農林大學學報(自然科學版),2013,42(5):480-484.

LAN Yanyang,GAO Jianlong,ZENG Runying,WANG Shao-feng. Effects of algae-oligosaccharides treatment on storage quality of Guanxi honey pomelo fruit[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition),2013,42(5):480-484.

[19] HOU Y P,GAO J L,GU L,WANG S F,ZENG R Y. Effects of agaro-oligosaccharide treatment on postharvest quality of cherry tomatoes during cold storage[J]. Journal of Food Processing and Preservation,2015,39(6):949-955.

[20] LI M L,LIN Q,CHEN Y Z,CHEN Y H,LIN M S,HUNG Y C,LIN H T. Acidic electrolyzed water treatment suppresses Phomopsis longanae Chi-induced the decreased storability and quality properties of fresh longans through modulating energy metabolism[J]. Food Chemistry,2023,404:134572.

[21] HAO Y Q,CHEN F H,WU G B,GAO W Y. Impact of postharvest nitric oxide treatment on lignin biosynthesis-related genes in wax apple (Syzygium samarangense) fruit[J]. Journal of Agricultural and Food Chemistry,2016,64(45):8483-8490.

[22] LIN Y Z,LI N,LIN H T,LIN M S,CHEN Y H,WANG H,RITENOUR M A,LIN Y F. Effects of chitosan treatment on the storability and quality properties of longan fruit during storage[J]. Food Chemistry,2020,306:125627.

[23] 羅振宇,陳曉婷,李雨函,汪瑩,蘇金強,楊靜,蘭嘉瀅,倪輝,張珅,林河通. 采后黃金百香果失水規律及其與品質劣變的關系[J]. 食品工業科技,2023,44(1):369-377.

LUO Zhenyu,CHEN Xiaoting,LI Yuhan,WANG Ying,SU Jinqiang,YANG Jing,LAN Jiaying,NI Hui,ZHANG Shen,LIN Hetong. Postharvest water loss pattern of golden passion fruit and its relationship with quality deterioration[J]. Science and Technology of Food Industry,2023,44(1):369-377.

[24] HU W Y,ZHANG X Y,GODANA E A,GU X Y,ZHAO L N,ZHANG H Y. Yarrowia lipolytica reduces the disease incidence of Asparagus infected by Fusarium proliferatum by affecting respiratory metabolism and energy status[J]. Biological Control,2021,159:104625.

[25] TAN X L,FAN Z Q,ZENG Z X,SHAN W,KUANG J F,LU W J,SU X G,TAO N G,LAKSHMANAN P,CHEN J Y,ZHAO Y T. Exogenous melatonin maintains leaf quality of postharvest Chinese flowering cabbage by modulating respiratory metabolism and energy status[J]. Postharvest Biology and Technology,2021,177:111524.

[26] TAO S K,ZHU Y,PAN Y G,ZHANG Z K,HUANG L J. Enhancement of respiratory metabolism of the pentose phosphate pathway (PPP) strengthens the chilling tolerance of postharvest Papaya fruit stored at 1 ℃[J]. Postharvest Biology and Technology,2022,191:111988.

[27] LIN Y F,CHEN Y Z,ZHENG Y,ZHANG H L,LIN M S,WANG H,FAN Z Q,CHEN Y H,LIN H T. Energy and respiratory metabolism participate in dicyclohexylcarbodiimide and disodium succinate-mediated the alteration of energy status modulating pericarp browning of fresh longan[J]. Postharvest Biology and Technology,2024,213:112959.

[28] CHEN Y H,SUN J Z,LIN H T,LIN M S,LIN Y F,WANG H,HUNG Y C. Salicylic acid reduces the incidence of Phomopsis longanae Chi infection in harvested longan fruit by affecting the energy status and respiratory metabolism[J]. Postharvest Biology and Technology,2020,160:111035.

[29] LI C Y,SUN L,ZHU J,CHENG Y,HUANG R,FAN Y T,GUO M,GE Y H. Trehalose maintains the quality of Malus domestica by mediating sucrose and respiratory metabolism[J]. Scientia Horticulturae,2022,295:110857.

[30] CHEN C Y,CAI N,WAN C P,KAI W B,CHEN J Y. Carvacrol delays Phomopsis stem-end rot development in pummelo fruit in relation to maintaining energy status and antioxidant system[J]. Food Chemistry,2022,372:131239.

[31] WANG D,MA Q,LI D,LI W X,LI L,AALIM H,LUO Z S. Moderation of respiratory cascades and energy metabolism of fresh-cut pear fruit in response to high CO2 controlled atmosphere[J]. Postharvest Biology and Technology,2021,172:111379.

[32] SONG C C,ZHAO Y Y,LI A,QI S N,LIN Q,DUAN Y Q. Postharvest nitric oxide treatment induced the alternative oxidase pathway to enhance antioxidant capacity and chilling tolerance in peach fruit[J]. Plant Physiology and Biochemistry,2021,167:113-122.

收稿日期:2024-09-04 接受日期:2024-11-30

基金項目:福建省海洋藻類活性物質制備與功能開發重點實驗室開放基金(2022-KF10);福建省自然科學基金面上項目(2023J01902,2023J01776,2021J01992);龍巖市科技計劃重點項目(2023LYF9025)

作者簡介:林育釗,男,講師,博士,研究方向為果蔬采后生物學與保鮮技術。E-mail:yuzhaolin820@163.com

*通信作者Author for correspondence. E-mail:yummyway@163.com;E-mail:szhang8811@jmu.edu.cn

主站蜘蛛池模板: 中文字幕在线欧美| 女人毛片a级大学毛片免费| 中文字幕永久在线看| 亚洲人妖在线| 国产成人精品亚洲日本对白优播| 精品人妻一区无码视频| 中文字幕永久视频| 日韩欧美高清视频| 91po国产在线精品免费观看| 久久99蜜桃精品久久久久小说| 制服丝袜国产精品| a毛片免费观看| 国产69精品久久| 国产大全韩国亚洲一区二区三区| 国产福利在线免费| 日本高清免费一本在线观看 | 日本午夜三级| 国产三级国产精品国产普男人| 狼友av永久网站免费观看| 日韩亚洲高清一区二区| 国产精品嫩草影院av| 亚洲成a人片77777在线播放| 成人国产一区二区三区| 日本91视频| 国产91精选在线观看| 亚洲精品另类| 欧美一区二区三区香蕉视| 亚洲首页在线观看| 亚洲无码免费黄色网址| 日本成人在线不卡视频| 国产十八禁在线观看免费| 国产香蕉在线| 亚洲天堂网在线观看视频| 激情综合图区| 国产色爱av资源综合区| 国产精品不卡片视频免费观看| www.精品视频| 欧美午夜网| 日本高清免费一本在线观看| 午夜福利免费视频| 2048国产精品原创综合在线| 亚洲va视频| 亚洲视频四区| 成人精品视频一区二区在线 | 天天综合色网| 国产精品一线天| 日韩a级毛片| 中文字幕自拍偷拍| 2021亚洲精品不卡a| 国产乱子伦精品视频| 91久久国产成人免费观看| 国产在线精品美女观看| 999精品色在线观看| 国产H片无码不卡在线视频| 九九九精品视频| 亚洲天堂2014| 久久综合丝袜日本网| 中文成人在线视频| 国产成人凹凸视频在线| 在线视频一区二区三区不卡| 污网站在线观看视频| 国产成人综合欧美精品久久| 国产一区二区影院| 国产91麻豆视频| 亚洲国产91人成在线| 国产午夜无码专区喷水| 91免费观看视频| 国产精品视屏| 黄色在线网| 中文字幕免费在线视频| 97se亚洲| 亚洲精品在线91| 久久久噜噜噜| 国产第一页免费浮力影院| 日本午夜精品一本在线观看| 麻豆精品视频在线原创| 在线欧美a| 永久在线精品免费视频观看| 91亚洲精选| 久久婷婷六月| 中文字幕在线日本| 欧美精品1区2区|