











摘" " 要:【目的】富民枳(Poncirus polyandra)為柑橘屬近緣種,是嫁接時廣泛使用的抗性砧木,屬云南省特有的極小種群野生植物。WRKY家族是植物中特有且最大的轉錄因子之一,在植物應對非生物脅迫過程中發揮著重要的作用。研究富民枳WRKY基因家族,為解析富民枳WRKY基因功能以及篩選抗旱基因提供理論依據。【方法】基于富民枳基因組數據,利用生物信息學方法對富民枳WRKY基因家族成員進行全基因組鑒定,系統分析該家族成員的理化性質、序列特征、系統進化關系、染色體定位、共線性、基因結構和順式作用元件等以及qRT-PCR分析干旱脅迫下的表達模式。【結果】在富民枳基因組中共鑒定到46個WRKY家族基因,命名為PpWRKY1~PpWRKY46,染色體定位分析顯示,WRKY家族基因不均勻地分布在9條染色體上。亞細胞定位預測表明,富民枳WRKY家族成員主要定位于細胞核上。WRKY結構域多序列比對分析顯示,只有Ⅱc亞組的PpWRKY15和PpWRKY21的典型七肽序列發生單氨基酸變異。共線性分析結果表明,富民枳和枳有88對共線性基因;片段復制是PpWRKY基因家族擴張的主要驅動力。順式作用元件分析表明,PpWRKY家族基因啟動子區域含有大量脅迫類和激素類響應順式作用元件。基于富民枳近緣種枳的WRKY家族基因在干旱脅迫下的轉錄組數據,在富民枳中篩選到PpWRKY8、PpWRKY12、PpWRKY13、PpWRKY19、PpWRKY23、PpWRKY27、PpWRKY28、PpWRKY30和PpWRKY41共9個同源抗旱候選基因,最后通過qRT-PCR分析表明,這9個基因均受干旱脅迫誘導顯著表達。蛋白互作預測結果表明,有12個PpWRKY蛋白可能通過MYB轉錄因子介導ABA信號參與調控氣孔運動來影響植物的耐旱性。【結論】鑒定到9個可能參與調控干旱脅迫的PpWRKY基因,為解析WRKY基因在富民枳干旱脅迫響應中的功能提供新信息,并為培育耐旱柑橘品種提供抗旱基因資源。
關鍵詞:富民枳;WRKY基因;干旱脅迫;生物信息學;表達分析
中圖分類號:S666 文獻標志碼:A 文章編號:1009-9980(2025)03-0508-18
Identification of WRKY gene family and analysis of drought stress expression in Poncirus polyandra
ZHANG Shanshan, RUAN Sunmei, YANG Wenzhong*
(Yunnan Academy of Forestry and Grassland Sciences/Yunnan Key Laboratory of Conservation and Breeding of Rare and Rare Forest Plants/National Forestry and Grassland Administration, Kunming 650201, Yunnan, China)
Abstract: 【Objective】 Poncirus polyandra, a relative species of citrus, is a type of resistant rootstock widely used in grafting. It is also a plant species with extremely small populations in Yunnan. The WRKY family, as one of the largest families of transcription factors in plants, plays a vital role in plant response to abiotic stresses such as drought, cold and salt. However, the current understandings of WRKY genes in P. polyandra are extremely limited. The purpose of this study is to analyse the function of WRKY genes and screen out the genes with potential drought resistances in P. polyandra. 【Methods】 Based on the genome-wide data of P. polyandra, WRKY genes were identified by HMMER, NCBI-CDD and SMART searches. Comprehensive analyses were systematically performed using bioinformatics methods, including the physicochemical properties, sequence characteristics, phylogenetic relationships, chromosome localization, collinearity, gene structure and cis-acting elements of the PpWRKY family members. In order to verify the drought resistance function of WRKY gene family members, one-year-old P. polyandra seedlings were used as experimental materials. In the drought stress experiments, the seedlings were treated with 20% PEG-6000 solution. The leaves were respectively collected after 0 h, 3 h, 6 h, 12 h and 24 h, and stored in the refrigerator at -80 ℃. Real-time fluorescence quantitative analysis was carried out to study the effects of drought stress on the expression patterns of these genes. 【Results】 A total of 46 WRKY family genes were identified in the genome of P. polyandra and named PpWRKY1-PpWRKY46. The results showed that the length of PpWRKY protein ranged from 116 to 1103 amino acids. Among them, the molecular weight of PpWRKY21 was the lowest (13 213.48 kDa), whereas PpWRKY23 had the highest molecular weight (120 198.96 kDa). The protein isoelectric points (pI) ranged from 4.93 (PpWRKY24) to 9.8 (PpWRKY17), and 61% of them was lower than 7.0, indicating that most of the proteins were acidic. Subcellular localization results exhibited that PpWRKY23 was located in lysosomes and vacuoles, and other PpWRKY genes were located in the nucleus. Phylogenetic analysis revealed that PpWRKY proteins could be classified into three groups, namely groups Ⅰ, Ⅱ and Ⅲ. Group Ⅱ had the most members (31), which was further divided into five subgroups (Ⅱa-Ⅱe), containing three, eight, nine, five and six PpWRKY members separately. WRKY domain multiple sequence alignment analysis demonstrated that only the typical heptaeptides of PpWRKY15 and PpWRKY21 in subgroup Ⅱc had single amino acid variation. Chromosome localization analysis revealed that WRKY family genes were unevenly distributed on nine chromosomes in P. polyandra. The genes clustered on chromosome one were the most, with a total of nine genes. But there was only one gene distributed on chromosome four. We found 24 duplicate gene pairs in the PpWRKY family, including four tandem duplicate gene pairs and 20 fragment duplicate gene pairs in the P. polyandra genome, suggesting that fragment replication was the main driving force for the expansion of PpWRKY gene family members. The Ka/Ks values of replicated WRKY genes in P. polyandra were all less than one, suggesting that these genes might have undergone purification selection. Intergenomic collinearity analysis indicated that there were 88 pairs of collinearity genes between P. polyandra and P. trifoliata. A cis-acting element analysis of the P. polyandra WRKY gene family members identified eight types of cis-elements related to plant hormone and stress responses. Among these, 26 PpWRKY genes contained a drought inducible element (MBS), 37 PpWRKY genes contained an abscisic acid-responsive element (ABRE), and 17 PpWRKY genes contained a low temperature response element (LTR). This suggested that the PpWRKY gene played an important role in the regulation of hormone and stress in P. polyandra. To mine the drought-resistant WRKY gene in P. polyandra, we analyzed the transcriptomic data of P. trifoliata with drought stress treaments. Reaults revealed that 37 out of the 53 WRKY genes in P. trifoliata were significantly upregulated by drought, indicating that these genes might play an important role in drought resistance. Then, we screened out nine homologous drought resistance candidate genes of P. polyandra which had a high homology with P. trifoliata, such as PpWRKY8, PpWRKY12, PpWRKY13, PpWRKY19, PpWRKY23, PpWRKY27, PpWRKY28, PpWRKY30 and PpWRKY41. Their expression patterns under drought stress were detected by real-time fluorescence quantification, and the results revealed that all nine genes were significantly up-regulated under drought stress. Among these genes, the expression of PpWRKY12, PpWRKY19, PpWRKY23, PpWRKY27, PpWRKY28 and PpWRKY30 genes reached the peak after 6 h of drought stress, which were 3.63-fold, 2.25-fold, 1.48-fold, 2.63-fold, 3.22-fold, and 2.89-fold of the control, respectively. PpWRKY8 and PpWRKY13 genes exhibited peak expression after 12 h of drought treatment, which were 2.6-fold and 2.9-fold of the control separately, and the expression of PpWRKY41 was the highest after 24 h of drought treatment, which was 2.92-fold of the control. The results demonstrated that these nine WRKY genes might be involved in the defence response of P. polyandra to drought stress. The results of protein interaction prediction showed that 12 PpWRKY proteins may be involved in regulating stomatal movement through MYB transcription factor mediated ABA signal to affect drought tolerance of plants. 【Conclusion】 A total of 46 WRKY genes were identified in P. polyandra. The expression levels of PpWRKY8, PpWRKY12, PpWRKY13, PpWRKY19, PpWRKY23, PpWRKY27, PpWRKY28, PpWRKY30 and PpWRKY41 significantly increased under drought stress, demonstrating that these genes may participate in the process of responses to drought. This study provides new information for analysing the function of WRKY gene and its regulatory mechanism in response to drought stress in P. polyandra, and supplies excellent genetic resources for breeding drought-tolerant citrus varieties.
Key words: Poncirus polyandra; WRKY genes; Drought stress; Bioinformatics; Expression analysis
WRKY家族是一類在植物界特有的、數量龐大的轉錄因子[1]。其名稱源于他們高度保守的WRKY結構域,該結構域大約包含60個氨基酸殘基,其中氨基(N)端有高度保守的七肽序列WRKYGQK,而在結構域的羧基(C)端則是一個C2H2型或C2HC型的鋅指結構[2]。根據WRKY結構域的數量以及鋅指結構的特征,WRKY轉錄因子一般被分為Ⅰ、Ⅱ和Ⅲ組[2-4]。WRKY轉錄因子通過WRKY結構域識別并結合DNA序列中的順式作用元件W-box[(C/T)TGAC(C/T)],進而調控靶基因的表達水平,發揮相應的生物學功能[1]。自第一個WRKY基因SPF1于1994年從甘薯(Dioscorea esculenta)中被克隆[5],WRKY基因家族相繼在擬南芥[6]、水稻[7]、草莓[8]、香樟[9]、綠豆[10]、板栗[11]等多種植物中被鑒定。
植物在生長過程中面臨著各種逆境脅迫[12],其中干旱是嚴重影響植物生長發育和產量的重要因素之一[13]。近年來,越來越多的研究表明,WRKY轉錄因子在植物響應干旱脅迫中起著關鍵作用[1,14]。研究表明,大豆中的GmWRKY27基因可以通過兩種方式增強大豆對干旱的抵抗力:一是直接抑制GmNAC29基因的啟動子活性,二是與GmMYB174基因協同作用,進一步抑制GmNAC29的表達[15]。擬南芥的AtWRKY1通過調節膜轉運蛋白以保持水分,從而調節其對干旱脅迫的響應[16]。尤其在擬南芥中過表達小麥的TaWRKY2和TaWRKY19或水稻的OsWRKY45基因,可提高植株對干旱脅迫的耐受性[17-18]。茶樹過表達CsWRKY26可通過激活脫落酸信號通路或調節乙烯、生長素及絲裂原活化蛋白激酶信號轉導,增強脅迫相關基因的表達,從而提高茶樹的抗旱能力[19]。棉花的GhWRKY68通過調節ABA信號傳導以及細胞活性氧來響應干旱脅迫和鹽脅迫[20]。
富民枳(Poncirus polyandra)是蕓香科枳屬常綠小喬木,為云南省特有的極小種群野生植物[21-22]。富民枳抗逆性強,是一種優秀的柑橘矮化砧[23-24],尤其在前期研究中發現,該物種具有一定的抗旱性(研究結果尚未發表)。枳(Poncirus trifoliata)是枳屬富民枳唯一的近緣種,耐旱耐寒,是柑橘最重要的砧木之一,也是最有價值的抗性和耐性基因來源[22,25-26]。雖然筆者課題組前期研究已發現富民枳基因組富含多個抗逆性相關基因[27],但富民枳的WRKY基因在干旱脅迫下是否發揮功能仍不得而知。
因此,筆者在本研究中基于富民枳的全基因組數據,通過篩選和鑒定PpWRKYs基因家族成員,分析其蛋白理化性質、進化關系、保守基序和順式作用元件等,并基于近緣種枳在干旱脅迫下的轉錄組數據,在富民枳中篩選同源抗旱候選WRKY基因,最后通過qRT-PCR驗證PpWRKYs在干旱脅迫下的表達水平,為進一步研究WRKY基因家族成員在富民枳響應干旱脅迫應答過程中的作用提供理論基礎。
1 材料和方法
1.1 富民枳WRKY基因家族鑒定及理化性質分析
富民枳基因組由筆者課題組完成測序并發表[27],WRKY保守結構域序列(PF03106)文件從InterPro(https://www.ebi.ac.uk/interpro/)數據庫下載。通過HMMER軟件構建隱馬爾可夫模型,在富民枳的氨基酸序列中檢索。檢索到的蛋白序列利用NCBI-CDD(https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi)和SMART(http://smart.embl-heidelberg.de/)數據庫進行結構域分析,剔除無WRKY結構域的蛋白,最終確定富民枳的WRKY基因家族成員。利用ExPASy(https://web.expasy.org/protparam/)網站中的ProtParam工具分析富民枳WRKY蛋白的序列長度、相對分子質量及等電點。利用Euk-mPLoc2.0(http://www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc-2/)在線網站進行亞細胞定位分析。
1.2 富民枳WRKY家族蛋白的序列比對和系統發育分析
利用MEGA11軟件中的MUSCLE對富民枳和擬南芥WRKY轉錄因子的氨基酸序列進行多序列比對,構建鄰接系統發育樹,bootstrap復制為1000,最后使用ggtree對進化樹進行美化[28]。利用DNAMAN軟件對PpWRKYs蛋白各亞組成員的WRKY結構域進行多序列比對及可視化。
1.3 PpWRKY基因的染色體定位和共線性分析
從Phytozome (https://phytozome-next.jgi.doe.gov/info/Ptrifoliata_v1_3_1)網站下載枳的全基因數據和基因注釋文件,富民枳基因組數據由筆者課題組完成測序并注釋,通過TBtools的MCScanX功能對富民枳進行種內與種間共線性分析,并計算富民枳中片段重復基因對的Ka/Ks比值。
1.4 PpWRKY家族基因結構、保守基序及結構域分析
利用MEME(http:∥meme suite.org/tools/meme)在線網站預測富民枳WRKY家族蛋白的保守基序,設置motif數量為10;通過TBtools軟件從富民枳基因組注釋文件中提取富民枳WRKY家族基因的外顯子和內含子位置信息;利用NCBI-CDD獲取PpWRKY家族蛋白的保守結構域位置信息。最后通過TBtools軟件的Gene Structure View工具進行可視化。
1.5 富民枳WRKY基因啟動子順式作用元件分析
利用TBtools軟件提取PpWRKYs基因上游2000 bp的啟動子序列,將其提交到Plant CARE(http://bioinformatics.psb.ugent.be/webtools/plantcar-
e/html/)網站進行順式作用元件預測,通過手動整理后利用TBtools軟件進行可視化。
1.6 富民枳同源抗旱WRKY候選基因的鑒定
從Phytozome 獲取枳的基因組數據,從NCBI (https://www.ncbi.nlm.nih.gov/)下載枳在干旱脅迫下的轉錄組數據,登記號是PRJNA905931。再利用 HMMER軟件鑒定枳的WRKY家族基因,方法如1.1,并通過枳WRKY基因ID提取在模擬干旱脅迫處理后0、1.5、6和24 h的轉錄組數據,利用TBtools軟件進行可視化。最后通過TBtools軟件把枳中表達量高且顯著上調的WRKY基因與富民枳基因組進行Blast,初步鑒定到富民枳抗旱候選基因。
1.7 實時熒光定量PCR(qRT-PCR)表達分析
以云南省林業與草原科學院溫室大棚培育的一年生富民枳作為試驗材料。選取長勢一致的富民枳幼苗,用20%的PEG-6000溶液處理模擬干旱脅迫,每個處理3個重復,分別于處理0、3、6、12和24 h后采集葉片,保存于-80 ℃冰箱。利用HiPure Plant RNA Plus Kit試劑盒(美基生物,北京)提取富民枳葉片總RNA,然后用江蘇百時美生物科技有限公司(連云港)的All-in-One First-Strand Synthesis MasterMix (with dsDNase)反轉錄試劑盒將總RNA反轉錄成cDNA。通過Vector NTI設計引物(表1),然后在生工生物工程股份有限公司(上海)合成。以Actin基因作為內參,使用F488 SYBR qPCR Mix熒光定量試劑盒(江蘇百時美,連云港)進行qRT-PCR檢測。反應體系10 μL:5 μL F488 SYBR qPCR Mix,0.25 μL正向引物,0.25 μL反向引物,1 μL cDNA,3.5 μL ddH2O。擴增程序:95 ℃預變性30~60 s;95 ℃變性10 s,60 ℃退火30 s,40個循環。采用2-ΔΔCT方法測定相對表達量[29]。
1.8 PpWRKY蛋白互作網絡預測
利用string 11.5(http://string-db.org/)數據庫預測PpWRKY蛋白與調控植物耐旱性的MYB蛋白(AtMYB15、AtMYB44和AtMYB96)的相互作用網絡,選定模式植物擬南芥為物種參數,去除不成簇和單個節點的蛋白得到蛋白互作網絡圖。
2 結果與分析
2.1 富民枳WRKY基因家族鑒定及理化性質分析
在富民枳基因組中共搜索到49條具有WRKY結構域的蛋白序列,剔除3條(evm.model.LG09.1378、evm.model.LG05.2450和evm.model.LG05.872)不含有典型WRKY結構域的假陽性序列后,最終從富民枳基因組中鑒定到46個PpWRKY基因,按照其在染色體上的位置順序命名為PpWRKY1~PpWRKY46(表2)。理化性質分析結果表明,鑒定到的46個PpWRKY蛋白的氨基酸數量為116~1103,其中PpWRKY21分子質量最低,為13 213.48 kDa;PpWRKY23分子質量最高,為120 199.00 kDa。蛋白等電點(pI)為4.93 (PpWRKY24)~9.80 (PpWRKY17),其中61%的蛋白等電點低于7.0,說明富民枳WRKY蛋白大部分是酸性。亞細胞定位預測結果顯示,除PpWRKY23定位于溶酶體和液泡外,其余45個PpWRKY基因均定位于細胞核中。
2.2 富民枳WRKY家族蛋白的序列比對和系統發育分析
對富民枳和擬南芥的WRKY蛋白序列構建系統發育樹,結果顯示,46個PpWRKY蛋白分為Ⅰ、Ⅱ、Ⅲ 3個組(圖1)。其中,Ⅱ組的成員數量最多,有31個,可進一步分為5個亞組(Ⅱa~Ⅱe),依次含有3、8、9、6和5個PpWRKY成員;Ⅰ和Ⅲ組分別含有9個和6個成員。富民枳WRKY結構域的多序列比對結果顯示,Ⅰ組9個蛋白均是C2H2型鋅指基序,屬于Ⅰa亞組,未在PpWRKY蛋白中發現含C2HC型鋅指基序的Ⅰb亞組成員(圖2)。除了Ⅱc亞組的PpWRKY15和PpWRKY21蛋白在WRKY結構域的七肽序列上出現了單個氨基酸變異,PpWRKY15中的Q被K替換,PpWRKY21中的R被K替換,其余44個PpWRKY基因家族成員均具有典型的WRKY結構域特征序列WRKYGQK,說明PpWRKYs基因家族保守性較強,暗示該基因家族編碼的蛋白質在生物體中承擔著關鍵的生物學功能。
2.3 染色體定位和共線性分析
染色體定位分析發現,46個富民枳的WRKY基因在9條染色體上的分布是不均勻的,尤其是1號染色體,上面聚集了最多的PpWRKY基因,共有9個,其次是7號染色體,有8個,4號染色體分布的PpWRKY基因最少,只有1個(圖3)。位于1號染色體的PpWRKY7和PpWRKY8,7號染色體的PpWRKY30和PpWRKY31,PpWRKY32和PpWRKY33,8號染色體的PpWRKY35和PpWRKY36為串聯重復基因;PpWRKY基因家族還存在20對片段復制基因,如PpWRKY13和PpWRKY43。為了探究PpWRKY基因在進化中是否經歷自然選擇,將計算其片段復制的Ka/Ks比值進行分析,結果顯示,在富民枳中發生片段復制的WRKY基因的Ka/Ks值均小于1(表3),說明這些基因經歷了純化選擇作用。通過對富民枳和枳的WRKY基因進行共線性分析發現,富民枳和枳有88對共線性基因(圖4)。
2.4 PpWRKY家族基因結構、保守基序及結構域分析
通過MEME軟件對46個PpWRKY蛋白的10個保守基序進行分析發現,Motif 1和Motif 3包括WRKY七肽結構域,Motif 2和Motif 10是鋅指基序,Motif 3和Motif 10組成了N端WRKY結構域,Motif 1和Motif 2組成了C端WRKY結構域(圖5)。46個富民枳WRKY蛋白中都包含Motif 1和Motif 2,而Motif 3只存在于Ⅰa亞組,說明Motif 1和Motif 2在PpWRKY蛋白中高度保守,可能具有重要的功能。不同組或亞組成員的基序組成有不同的特點。Ⅱa亞組和Ⅱb亞組基序組成相似,都具有Motif 1、Motif 2、Motif 5、Motif 6和Motif 8 5個基序,此外Ⅱb亞組還特有一個Motif 9;Ⅱc亞組成員除PpWRKY21只有Motif 1和Motif 2外,其余成員皆還有Motif 4;Ⅱd、Ⅱe亞組和Ⅲ組成員基序組成較為相似,除了PpWRKY3、PpWRKY32和PpWRKY33缺失Motif 7外,其余成員都由Motif 1、Motif 2和Motif 7組成。這些結果反映了WRKY轉錄因子在富民枳進化過程中功能的多樣性和保守性。
保守結構域分析顯示,46個PpWRKY蛋白中至少含有一個WRKY結構域,其中有9個PpWRKY蛋白還含有其他結構域,值得注意的是Ⅱd亞組的蛋白(PpWRKY9、PpWRKY17、PpWRKY41、PpWRKY11和PpWRKY16)都含有植物鋅簇結構域(Plant_zn_clust)(圖5),但其功能尚不清楚。PpWRKY家族基因結構分析顯示,除PpWRKY23基因的外顯子數量(20個)較多外,其余45個PpWRKY基因的外顯子數量為2到6個不等。其中,Ⅰa、Ⅱa和Ⅱb亞組WRKY基因的外顯子數量為4~6個;Ⅱd、Ⅱe亞組和Ⅲ組WRKY基因的外顯子數量均為3個;Ⅱc亞組WRKY基因的外顯子數量為2~3個,其中含有3個外顯子的基因占大部分。上述結果表明,WRKY家族每個亞組的成員在基因結構上具有多樣性和特異性。
2.5 富民枳WRKY基因啟動子順式作用元件分析
對富民枳WRKY基因上游2000 bp的啟動子區域順式作用元件進行預測的結果顯示,PpWRKY啟動子中存在8種與激素類和脅迫類響應相關的元件(圖6)。其中,37個PpWRKY基因的啟動子中含有184個茉莉酸甲酯響應元件(TGACG-motif/CGTCA-motif);21個PpWRKY基因的啟動子中有24個脅迫響應元件(TC-rich repeats);26個PpWRKY基因含有38個干旱誘導元件(MBS);37個PpWRKY基因含有132個脫落酸響應元件(ABRE);15個PpWRKY基因含有18個水楊酸響應元件(TCA-element);17個PpWRKY基因的啟動子含有25個低溫響應元件(LTR)。推測PpWRKY基因在富民枳激素調控和逆境脅迫中發揮著重要作用。
2.6 富民枳同源抗旱WRKY候選基因的鑒定
在枳中鑒定出53個WRKY基因后,對其在PEG-6000模擬干旱處理后0、1.5、6和24 h的表達情況進行分析。結果顯示,53個枳的WRKY基因按照其對干旱脅迫的應答模式可分為3組,第1組為Ptrif.0001s2122.1等8個基因,表達量隨著模擬干旱脅迫時間的延長逐漸下降;第2組為Ptrif.0006s0664.1等8個基因,在干旱處理前期(1.5 h)表達量上升,后期(24 h)表達量下降;第3組為Ptrif.0004s1310.1等37個基因,表達量隨著干旱處理時間的延長而上升(圖7),表明這些WRKY基因在干旱脅迫中發揮重要作用。值得注意的是,Ptrif.0001s0079.1、Ptrif.0002s1584.1、Ptrif.0002s3086.1、Ptrif.0003s3779.1、Ptrif.0004s1310.1、Ptrif.0004s1919.1、Ptrif.0004s242-
6.1、Ptrif.0007s1695.1和Ptrif.0007s1914.1基因表達水平較高且干旱處理后顯著上調表達,表明這些基因在干旱脅迫中極為關鍵。將這9個基因編碼的氨基酸序列比對到富民枳基因組數據庫,分別在富民枳中搜索到同源基因PpWRKY41、PpWRKY19、PpWRKY23、PpWRKY8、PpWRKY27、PpWRKY28、PpWRKY30、PpWRKY12和PpWRKY13,且同源性都在95%以上,推測這9個PpWRKY基因也受干旱誘導表達,可能參與富民枳對干旱脅迫的防御反應。
2.7 實時熒光定量PCR(qRT-PCR)表達分析
為了進一步研究PpWRKY8、PpWRKY12、PpWRKY13、PpWRKY19、PpWRKY23、PpWRKY27、PpWRKY28、PpWRKY30和PpWRKY41基因在干旱脅迫下的表達特征,利用20%的PEG-6000模擬干旱試驗,分別檢測這9個基因在干旱脅迫處理后0、3、6、12和24 h的表達水平。結果顯示,與對照(0 h)相比,PpWRKY8在干旱處理后3 h表達量開始顯著上調,在12 h后達到峰值,為對照的2.60倍;PpWRKY12、PpWRKY27、PpWRKY28和PpWRKY30在干旱處理后3 h表達量開始顯著上調,在6 h后達到峰值,分別為對照的3.63、2.63、3.22和2.89倍;PpWRKY19和PpWRKY23在干旱處理后6 h和12 h表達量顯著上調,其中在6 h時表達量最高,分別為對照的2.25倍和1.48倍;PpWRKY13在干旱處理后6 h表達量開始顯著上調,并在12 h后達到峰值,為對照的2.90倍;PpWRKY41在干旱處理后6 h表達量開始顯著上調,在24 h后達到峰值,為對照的2.92倍(圖8)。以上結果表明,PpWRKY8、PpWRKY12、PpWRKY13、PpWRKY19、PpWRKY23、PpWRKY27、PpWRKY28、PpWRKY30和PpWRKY41基因均受干旱脅迫誘導表達,進一步證明這9個WRKY基因可能參與富民枳對干旱脅迫的防御反應。
2.8 PpWRKY蛋白互作網絡預測
為了探索PpWRKY蛋白之間潛在的調控網絡,筆者利用STRING 11.5在線軟件構建46個PpWRKY蛋白與調控植物耐旱性的MYB蛋白(AtMYB15、AtMYB44和AtMYB96)之間的蛋白質-蛋白質相互作用網絡。預測結果顯示,共有41個PpWRKY蛋白相互作用,其中AtWRKY40(PpWRKY12,36)屬于網絡中的中心節點,與17個AtWRKY蛋白相互作用(圖9)。AtWRKY33(PpWRKY13,43)、AtWRKY28(PpWRKY27)、AtWRKY11(PpWRKY41)和AtWRKY22(PpWRKY3,8)等蛋白均至少與8個蛋白相互作用。此外,還預測到AtWRKY22(PpWRKY3,8)和AtWRKY41(PpWRKY4,25)與AtMYB44蛋白相互作用,AtWRKY46(PpWRKY5)和AtWRKY48(PpWRKY26)與AtMYB15蛋白相互作用,而AtWRKY33(PpWRKY13,43)、AtWRKY40(PpWRKY12,36)和AtWRKY70(PpWRKY33,42)蛋白與AtMYB44和AtMYB15蛋白均可相互作用。上述結果表明,PpWRKY蛋白在富民枳對干旱脅迫的調控中發揮重要作用。
3 討 論
3.1 PpWRKY基因家族的結構特征
WRKY基因家族大小具有物種特異性,尤其是草本植物中的WRKY基因數量比木本植物高[30]。例如,茶樹中只有50個WRKY基因[30],而在假儉草中卻有92個[31]。本研究對象富民枳為常綠小喬木,共鑒定出46個WRKY基因家族成員,與黃連(41個)[32]、梔子(47個)[33]及杜仲(51個)[34]等木本植物中的WRKY基因數量差距不大,但與擬南芥(74個)[6]、水稻(98個)[7]和大豆(188個)[35]等草本植物相比,富民枳中的WRKY基因數量明顯減少,此結果在一定程度上支持Wu等[30]的觀點。Ⅱ組WRKY轉錄因子在植物中的數量相對較多,且在進化上顯示出較高的多樣性,可使植物具有更強的環境適應性[36]。在本研究中,富民枳的46個PpWRKY被分為Ⅰ、Ⅱ和Ⅲ共3組,其中Ⅱ組成員同樣最多,占比最大(67%),并可分為5個亞組,這有可能是富民枳抵抗干旱脅迫的重要原因。研究發現,短舌野生稻(Oryza barthii A. Chev.)、南方野生稻(Oryza meridionalis Ng.)和普通野生稻(Oryza rufipogon Grif.)等植物的WRKY轉錄因子中都含有Ⅰb亞組成員[37],但富民枳中未鑒定到Ⅰb亞組的WRKY轉錄因子,推測富民枳的WRKY基因家族進化速度較為緩慢。
相同或相似的基序是維系蛋白質結構域進而發揮生物學功能的重要前提[38]。富民枳PpWRKY蛋白同一亞組基序分布基本一致,而各組間存在差異。基因結構分析發現,各亞組的WRKY基因的外顯子數量有所不同,但Ⅱd、Ⅱe亞組和Ⅲ組WRKY基因的外顯子數量是相同的,而Ⅰa、Ⅱa和Ⅱb亞組的外顯子數量也較為相似。因此,推測這些外顯子數量相同或相似的基因在功能上可能相同。WRKYGQK序列的變異可能會導致WRKY轉錄因子與DNA結合能力的改變[39]。保守結構域多序列比對分析發現,富民枳46個WRKY蛋白都含有完整的WRKY結構域,具備與DNA序列中的順式作用元件W-box結合的能力。然而,PpWRKY家族中Ⅱc亞組的2個蛋白的WRKYGQK七肽序列分別變異為WRKYGKK(PpWRKY15)和WKKYGQK(PpWRKY21),這兩個基因與DNA結合的能力可能會發生變化。在本研究中,PpWRKY基因家族存在4對串聯重復基因和20對片段復制基因,說明片段復制是富民枳WRKY基因家族的主要擴增方式,這與香樟和綠豆WRKY基因家族的擴增方式相似[9-10]。Ka/Ks>1表示正選擇,Ka/Ks=1表示中性選擇,Ka/Kslt;1表示純化選擇。富民枳20對片段復制基因的Ka/Ks均低于1,證明這些基因在其進化歷程中,可能借助純化選擇消除了有害的突變位點[40]。
3.2 PpWRKY基因家族的功能分析及表達特點
植物遭受干旱脅迫時會引起脫落酸(ABA)水平的增高[41-42]。ABA作為響應逆境脅迫的內源激素,在植物抵抗干旱脅迫中起到重要作用[43]。ABA依賴性途徑是植物響應干旱脅迫的信號轉導途徑之一[44]。在ABA依賴性途徑中,啟動子區存在ABRE的基因通常會被ABA誘導,從而調控植物對干旱脅迫的響應[44]。在富民枳中,80.4%的PpWRKY基因啟動子區含有132個ABRE,說明大部分PpWRKY基因可能通過ABA依賴性途徑參與干旱響應。啟動子區含有干旱誘導元件(MBS)的基因可參與植物對干旱脅迫的響應[45]。例如,啟動子區含有MBS元件的AtMYC2基因,其表達受干旱和ABA的誘導,并且過表達AtMYC2的轉基因植物對ABA具有更高的敏感性。在富民枳WRKY基因啟動子區存在38個MBS元件,進而推測富民枳通過MBS元件響應干旱脅迫。
植物受到干旱脅迫時,WRKY基因可被快速誘導表達,從而觸發一個信號級聯網絡,最終增強植物的抗逆性[46]。如玉米ZmWRKY40基因的表達會受干旱、鹽害、高溫和ABA誘導[47]。甘蔗ScWRKY5基因能夠被鹽脅迫和干旱脅迫誘導表達[48]。杜梨PbrWRKY53基因被干旱和ABA誘導大幅上調表達,并且在煙草和杜梨中過表達PbrWRKY53基因都能顯著增強對干旱脅迫的抗性[49]。在本研究中,富民枳近緣種枳的大部分WRKY基因在干旱脅迫下表達量上調,表明這些WRKY基因在枳對干旱脅迫的響應中可能起到了正向調控的作用。雖然在本研究中富民枳未測干旱脅迫下的轉錄組數據,但枳與富民枳親緣關系近[22],因此利用枳同源WRKY基因在干旱脅迫下的表達情況篩選富民枳的抗旱基因成為一種可能。PpWRKY12、PpWRKY13和PpWRKY23分別與擬南芥中的AtWRKY40(AT1G80840)、AtWRKY33(AT2G38470)和AtWRKY6(AT1G62300)聚在一起。研究發現,AtWRKY40在干旱脅迫下會被誘導表達,并且能夠通過調節植株的抗氧化能力和滲透調節能力來參與擬南芥對干旱脅迫的響應過程[50];AtWRKY33受滲透脅迫和ABA誘導表達,并參與調控包括干旱在內的多種逆境脅迫[51];AtWRKY6的表達受到ABA的誘導,并且其編碼蛋白可通過直接抑制RAV1基因的表達來增強ABA信號轉導途徑中的關鍵基因ABI3、ABI4和ABI5的表達[52]。因此,推測富民枳中的PpWRKY12、PpWRKY13和PpWRKY23也具有響應干旱脅迫的功能。筆者在本研究中發現,PpWRKY12、PpWRKY13和PpWRKY23基因的啟動子中均存在ABA響應元件,其中,PpWRKY12和PpWRKY23還分別含有脅迫響應元件和干旱誘導元件,并且qRT-PCR試驗證明這3個基因均受干旱脅迫誘導表達。這些結果說明PpWRKY12、PpWRKY13和PpWRKY23基因可參與富民枳抵御干旱脅迫的過程。此外,PpWRKY8、PpWRKY19、PpWRKY27、PpWRKY28、PpWRKY30和PpWRKY41基因分別與擬南芥中的AtWRKY22、AtWRKY1、AtWRKY71、AtWRKY75、AtWRKY4和AtWRKY17基因的序列相似性較高,但擬南芥的這6個基因在抗旱方面的研究未見報道。筆者在本研究中發現,PpWRKY8、PpWRKY19、PpWRKY27、PpWRKY28、PpWRKY30和PpWRKY41基因均含脫落酸響應元件,除此以外,PpWRKY8、PpWRKY19、PpWRKY30和PpWRKY41基因還存在干旱誘導元件,而PpWRKY28基因還含有脅迫響應元件。因此,推測這6個基因可能直接或間接被干旱誘導表達。為驗證這6個基因是否能被干旱脅迫誘導,檢測了他們在干旱脅迫處理后的表達水平,結果發現這6個基因確實受干旱脅迫誘導表達,其中PpWRKY19、PpWRKY27、PpWRKY28和PpWRKY30基因在干旱處理6 h后表達量達到峰值,說明這4個PpWRKY基因可能在干旱脅迫早期發揮關鍵作用。
3.3 PpWRKY蛋白互作預測
蛋白互作預測有助于研究PpWRKY蛋白的調控機制和功能。AtWRKY40(PpWRKY12,36)屬于網絡中的中心節點,與多個蛋白相互作用,可能在富民枳生長發育及生物和非生物脅迫中發揮關鍵作用。前期研究發現,擬南芥的MYB44和MYB15蛋白通過ABA信號可以促進氣孔關閉,提高植物對干旱的耐受性[53]。在本研究中,蛋白互作預測發現AtWRKY22(PpWRKY3,8)和AtWRKY41(PpWRKY4,25)可與AtMYB44蛋白相互作用,AtWRKY46(PpWRKY5)和AtWRKY48(PpWRKY26)可與AtMYB15蛋白相互作用,而AtWRKY33(PpWRKY13,43)、AtWRKY40(PpWRKY12,36)和AtWRKY70(PpWRKY33,42)蛋白與這兩個MYB蛋白均可相互作用,推測PpWRKY3、PpWRKY4、PpWRKY5、PpWRKY8、PpWRKY12、PpWRKY13、PpWRKY25和PpWRKY26、PpWRKY33、PpWRKY36、PpWRKY42和PpWRKY43可能與MYB蛋白互作,從而通過ABA信號參與調控氣孔運動來影響植物的耐旱性。AtMYB96的過表達可以促進表皮蠟質生物合成上調,從而提高擬南芥的耐旱性[54]。AtMYB96雖然未與WRKY蛋白直接互作,但通過與AtMYB44互作,間接參與WRKY蛋白對干旱的調控。綜上所述,本研究為進一步探索WRKY轉錄因子在富民枳中的抗旱機制了提供理論依據。
4 結 論
筆者從富民枳中鑒定到46個WRKY基因,其不均勻地分布在9條染色體上,以片段復制作為基因家族擴張的主要方式。PpWRKY基因家族可能與植物抵御逆境脅迫密切相關。qRT-PCR試驗證明,PpWRKY8、PpWRKY12、PpWRKY13、PpWRKY19、PpWRKY23、PpWRKY27、PpWRKY28、PpWRKY30和PpWRKY41可能參與富民枳對干旱脅迫的響應。蛋白互作結果表明,有12個PpWRKY蛋白可能通過MYB轉錄因子介導ABA信號參與調控氣孔運動來影響植物的耐旱性。研究結果可為后續進行PpWRKY基因的抗旱功能和調控機制研究提供參考依據。
參考文獻 References:
[1] 杜超. WRKY轉錄因子家族在植物響應逆境脅迫中的功能及應用[J]. 草業科學,2021,38(7):1287-1300.
DU Chao. Function and application of the WRKY transcription factor superfamily in plant response to stresses[J]. Pratacultural Science,2021,38(7):1287-1300.
[2] EULGEM T,RUSHTON P J,ROBATZEK S,SOMSSICH I E. The WRKY superfamily of plant transcription factors[J]. Trends in Plant Science,2000,5(5):199-206.
[3] WU K L,GUO Z J,WANG H H,LI J. The WRKY family of transcription factors in rice and Arabidopsis and their origins[J]. DNA Research,2005,12(1):9-26.
[4] 阮孫美,張攀,張敏,曾千春,張慧,羅瓊. 疣粒野生稻WRKY基因家族全基因組鑒定和分析[J]. 植物遺傳資源學報,2024,25(4):629-646.
RUAN Sunmei,ZHANG Pan,ZHANG Min,ZENG Qianchun,ZHANG Hui,LUO Qiong. Genome-wide identification and bioinformatics analysis of WRKY gene family in wild rice species,Oryza granulata[J]. Journal of Plant Genetic Resources,2024,25(4):629-646.
[5] ISHIGURO S,NAKAMURA K. Characterization of a cDNA encoding a novel DNA-binding protein,SPF1 that recognizes SP8 sequences in the 5' upstream regions of genes coding for sporamin and beta-amylase from sweet potato[J]. Molecular amp; General Genetics,1994,244(6):563-571.
[6] EULGEM T,SOMSSICH I E. Networks of WRKY transcription factors in defense signaling[J]. Current Opinion in Plant Biology,2007,10(4):366-371.
[7] ROSS C A,LIU Y,SHEN Q J. The WRKY gene family in rice (Oryza sativa)[J]. Journal of Integrative Plant Biology,2007,49(6):827-842.
[8] GARRIDO-GALA J,HIGUERA J J,RODRíGUEZ-FRANCO A,MU?OZ-BLANCO J,AMIL-RUIZ F,CABALLERO J L. A comprehensive study of the WRKY transcription factor family in strawberry[J]. Plants,2022,11(12):1585.
[9] 倪輝,孫維紅,丁樂,曾偉偉,鄒雙全. 香樟全基因組WRKY基因家族的鑒定與分析[J]. 植物科學學報,2022,40(4):513-523.
NI Hui,SUN Weihong,DING Le,ZENG Weiwei,ZOU Shuang-quan. Identification and analysis of the WRKY gene family in whole genome of Cinnamomum camphora (L.) Presl.[J]. Plant Science Journal,2022,40(4):513-523.
[10] 郝青婷,高偉,閆虎斌,張澤燕,朱慧珺,王茜,趙雪英,張耀文. 綠豆WRKY基因家族的全基因組鑒定及生物信息學分析[J]. 西北農林科技大學學報(自然科學版),2023,51(5):59-71.
HAO Qingting,GAO Wei,YAN Hubin,ZHANG Zeyan,ZHU Huijun,WANG Qian,ZHAO Xueying,ZHANG Yaowen. Genome-wide identification and bio-informatics analysis of WRKY gene family in Vigna radiata[J]. Journal of Northwest A amp; F University (Natural Science Edition),2023,51(5):59-71.
[11] 趙爽,葛朝紅,石鶴飛,閔卓,王廣鵬,李偉明. 板栗WRKY基因家族鑒定及其在干旱脅迫下的表達分析[J]. 華北農學報,2024,39(1):72-82.
ZHAO Shuang,GE Chaohong,SHI Hefei,MIN Zhuo,WANG Guangpeng,LI Weiming. Identification and expression analysis of the chestnut WRKY gene family under drought stress[J]. Acta Agriculturae Boreali-Sinica,2024,39(1):72-82.
[12] 歐陽夢真,朱磊,孫治強,李勝利,吳幗秀,李陽,何富豪,李嚴曼. 西瓜ClWRKY54基因的克隆、亞細胞定位及表達分析[J]. 中國瓜菜,2019,32(12):8-14.
OUYANG Mengzhen,ZHU Lei,SUN Zhiqiang,LI Shengli,WU Guoxiu,LI Yang,HE Fuhao,LI Yanman. Cloning,subcellular localization and expression analysis of ClWRKY54 in Citrullus lanatus[J]. China Cucurbits and Vegetables,2019,32(12):8-14.
[13] SHAFFIQUE S,KHAN M A,IMRAN M,KANG S M,PARK Y S,WANI S H,LEE I J. Research progress in the field of microbial mitigation of drought stress in plants[J]. Frontiers in Plant Science,2022,13:870626.
[14] ZHANG J W,HUANG D Z,ZHAO X J,ZHANG M,WANG Q,HOU X Y,DI D L,SU B B,WANG S K,SUN P. Drought-responsive WRKY transcription factor genes IgWRKY50 and IgWRKY32 from Iris germanica enhance drought resistance in transgenic Arabidopsis[J]. Frontiers in Plant Science,2022,13:983600.
[15] CAI H Y,YANG S,YAN Y,XIAO Z L,CHENG J B,WU J,QIU A L,LAI Y,MOU S L,GUAN D Y,HUANG R H,HE S L. CaWRKY6 transcriptionally activates CaWRKY40,regulates Ralstonia solanacearum resistance,and confers high-temperature and high-humidity tolerance in pepper[J]. Journal of Experimental Botany,2015,66(11):3163-3174.
[16] QIAO Z,LI C L,ZHANG W. WRKY1 regulates stomatal movement in drought-stressed Arabidopsis thaliana[J]. Plant Molecular Biology,2016,91(1/2):53-65.
[17] QIU Y P,YU D Q. Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis[J]. Environmental and Experimental Botany,2009,65(1):35-47.
[18] NIU C F,WEI W,ZHOU Q Y,TIAN A G,HAO Y J,ZHANG W K,MA B,LIN Q,ZHANG Z B,ZHANG J S,CHEN S Y. Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants[J]. Plant,Cell amp; Environment,2012,35(6):1156-1170.
[19] CHEN W,ZHENG C,YAO M Z,CHEN L. The tea plant CsWRKY26 promotes drought tolerance in transgenic Arabidopsis plants[J]. Beverage Plant Research,2021,1:3.
[20] JIA H H,WANG C,WANG F,LIU S C,LI G L,GUO X Q. GhWRKY68 reduces resistance to salt and drought in transgenic Nicotiana benthamiana[J]. PLoS One,2015,10(3):e0120646.
[21] 張珊珊,甘云浩,楊文忠,段宗亮,丁紅茜,康紅梅,諾蘇那瑪. 富民枳種質資源的SSR遺傳多樣性研究[J]. 西部林業科學,2018,47(4):14-20.
ZHANG Shanshan,GAN Yunhao,YANG Wenzhong,DUAN Zongliang,DING Hongqian,KANG Hongmei,NUO Sunama. Genetic diversity of Poncirus polyandra resources[J]. Journal of West China Forestry Science,2018,47(4):14-20.
[22] 張余,龔洵,馮秀彥. 利用DNA片段測序方法探究枳屬和富民枳的分類地位[J]. 廣西植物,2021,41(1):114-122.
ZHANG Yu,GONG Xun,FENG Xiuyan. Phylogenetic position of Poncirus and Poncirus polyandra by DNA sequencing[J]. Guihaia,2021,41(1):114-122.
[23] 周開兵,夏仁學. 中國柑橘砧木選擇研究進展與展望[J]. 中國農學通報,2005,21(1):213-218.
ZHOU Kaibing,XIA Renxue. The proceedings and tendencies in the study on the choice of rootstocks for citrus in China[J]. Chinese Agricultural Science Bulletin,2005,21(1):213-218.
[24] 吳玉,陶曉寧,袁河清,易敏,王輝,楊利平. 基于4個核基因系統發育樹分析華中枳和富民枳的分類地位[J]. 果樹學報,2024,41(10):1979-1989.
WU Yu,TAO Xiaoning,YUAN Heqing,YI Min,WANG Hui,YANG Liping. Taxonomic status of Citrus × pubinervia and Citrus × polytrifolia based on the phylogenetic trees reconstructed by four nuclear genes[J]. Journal of Fruit Science,2024,41(10):1979-1989.
[25] PENG Z,BREDESON J V,WU G A,SHU S Q,RAWAT N,DU D L,PARAJULI S,YU Q B,YOU Q,ROKHSAR D S,Jr GMITTER F G,DENG Z N. A chromosome-scale reference genome of trifoliate orange (Poncirus trifoliata) provides insights into disease resistance,cold tolerance and genome evolution in Citrus[J]. The Plant Journal,2020,104(5):1215-1232.
[26] YU X,REN Y L,LIU X F,JIANG D,ZHU S P,SHEN W X,ZHAO W T,ZHAO X C,CAO L. Whole transcriptome analysis of trifoliate orange [Poncirus trifoliata (L.) Raf.] under osmotic stress[J]. Scientia Horticulturae,2023,317:112045.
[27] ZHANG S S,CHEN J,ZHANG C G,ZHANG S Q,ZHANG X L,GAO L J,YANG W Z. Insights into identifying resistance genes for cold and disease stresses through chromosome-level reference genome analyses of Poncirus polyandra[J]. Genomics,2023,115(3):110617.
[28] YU G C. Using ggtree to visualize data on tree-like structures[J]. Current Protocols in Bioinformatics,2020,69(1):e96.
[29] LIVAK K J,SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) method[J]. Methods,2001,25(4):402-408.
[30] WU Z J,LI X H,LIU Z W,LI H,WANG Y X,ZHUANG J. Transcriptome-wide identification of Camellia sinensis WRKY transcription factors in response to temperature stress[J]. Molecular Genetics and Genomics,2016,291(1):255-269.
[31] 于元平,蔣宇佳,孫向一,吳春妍,周敏,劉明稀. 假儉草WRKY家族基因鑒定及其響應干旱脅迫表達分析[J]. 草地學報,2024,32(5):1378-1391.
YU Yuanping,JIANG Yujia,SUN Xiangyi,WU Chunyan,ZHOU Min,LIU Mingxi. Identification of the WRKY family genes and thier expression analysis in response to drought stress in centipedegrass[J]. Acta Agrestia Sinica,2024,32(5):1378-1391.
[32] 劉微,蔣莉萍,池玉潔,劉義飛,陳士林,劉迪. 黃連WRKY基因家族鑒定及表達分析[J]. 世界科學技術-中醫藥現代化,2022,24(4):1369-1380.
LIU Wei,JIANG Liping,CHI Yujie,LIU Yifei,CHEN Shilin,LIU Di. Identification and expression analysis of WRKY gene family in Coptis chinensis[J]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology,2022,24(4):1369-1380.
[33] 陳嘯,陳淑穎,朱淵銘,倪林,鄒雙全. 梔子WRKY基因家族鑒定及其響應鹽脅迫的表達模式[J]. 西南農業學報,2024,37(3):503-512.
CHEN Xiao,CHEN Shuying,ZHU Yuanming,NI Lin,ZOU Shuangquan. Identification of WRKY gene family in Gardenia jasminoides and its expression patterns in response to salt stress[J]. Southwest China Journal of Agricultural Sciences,2024,37(3):503-512.
[34] 慶軍,杜慶鑫,朱利利,何鳳,杜紅巖. 杜仲全基因組WRKY轉錄因子基因家族鑒定及表達分析[J]. 基因組學與應用生物學,2021,40(增刊1):2276-2289.
QING Jun,DU Qingxin,ZHU Lili,HE Feng,DU Hongyan. Genome-wide identification and expression analysis of WRKY transcription factor family in Eucommia ulmoides[J]. Genomics and Applied Biology,2021,40(Suppl. 1):2276-2289.
[35] 陳林英,李佳佳,王博,杜婉清,高夢雪,劉慧,檀淑琴,邱麗娟,王曉波. WRKY轉錄因子在大豆響應生物和非生物脅迫中的功能研究進展[J]. 植物遺傳資源學報,2022,23(2):323-332.
CHEN Linying,LI Jiajia,WANG Bo,DU Wanqing,GAO Mengxue,LIU Hui,TAN Shuqin,QIU Lijuan,WANG Xiaobo. Research progress on the function of WRKY transcription factor response to biotic and abiotic stresses in soybean[J]. Journal of Plant Genetic Resources,2022,23(2):323-332.
[36] GOYAL P,DEVI R,VERMA B,HUSSAIN S,ARORA P,TABASSUM R,GUPTA S. WRKY transcription factors:Evolution,regulation,and functional diversity in plants[J]. Protoplasma,2023,260(2):331-348.
[37] VILLACASTIN A J,ADAMS K S,BOONJUE R,RUSHTON P J,HAN M,SHEN J Q. Dynamic differential evolution schemes of WRKY transcription factors in domesticated and wild rice[J]. Scientific Reports,2021,11(1):14887.
[38] 吳圳,張明英,閆鋒,李依民,高靜,顏永剛,張崗. 掌葉大黃(Rheum palmatum L.)WRKY基因家族鑒定與分析[J]. 生物技術通報,2024,40(1):250-261.
WU Zhen,ZHANG Mingying,YAN Feng,LI Yimin,GAO Jing,YAN Yonggang,ZHANG Gang. Identification and analysis of WRKY gene family in Rheum palmatum L.[J]. Biotechnology Bulletin,2024,40(1):250-261.
[39] CHEN F,HU Y,VANNOZZI A,WU K C,CAI H Y,QIN Y,MULLIS A,LIN Z G,ZHANG L S. The WRKY transcription factor family in model plants and crops[J]. Critical Reviews in Plant Sciences,2017,36(5/6):311-335.
[40] 郭純,宋桂梅,閆艷,邸鵬,王英平. 西洋參bZIP基因家族全基因組鑒定和表達分析[J]. 生物技術通報,2024,40(4):167-178.
GUO Chun,SONG Guimei,YAN Yan,DI Peng,WANG Yingping. Genome wide identification and expression analysis of the bZIP gene family in Panax quinquefolius[J]. Biotechnology Bulletin,2024,40(4):167-178.
[41] ZHANG J H,JIA W S,YANG J C,ISMAIL A M. Role of ABA in integrating plant responses to drought and salt stresses[J]. Field Crops Research,2006,97(1):111-119.
[42] LATA C R,PRASAD M. Role of DREBs in regulation of abiotic stress responses in plants[J]. Journal of Experimental Botany,2011,62(14):4731-4748.
[43] ZHU J K. Abiotic stress signaling and responses in plants[J]. Cell,2016,167(2):313-324.
[44] 王冰,程憲國. 干旱、高鹽及低溫脅迫下植物生理及轉錄因子的應答調控[J]. 植物營養與肥料學報,2017,23(6):1565-1574.
WANG Bing,CHENG Xianguo. Physiological responses and regulatory pathways of transcription factors in plants under drought,high-salt,and low temperature stresses[J]. Journal of Plant Nutrition and Fertilizer,2017,23(6):1565-1574.
[45] ABE H,URAO T,ITO T,SEKI M,SHINOZAKI K,YAMAGUCHI-SHINOZAKI K. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling[J]. The Plant Cell,2003,15(1):63-78.
[46] JIANG J J,MA S H,YE N H,JIANG M,CAO J S,ZHANG J H. WRKY transcription factors in plant responses to stresses[J]. Journal of Integrative Plant Biology,2017,59(2):86-101.
[47] WANG C T,RU J N,LIU Y W,YANG J F,LI M,XU Z S,FU J D. The maize WRKY transcription factor ZmWRKY40 confers drought resistance in transgenic Arabidopsis[J]. International Journal of Molecular Sciences,2018,19(9):2580.
[48] WANG D J,WANG L,SU W H,REN Y J,YOU C H,ZHANG C,QUE Y X,SU Y C. A class III WRKY transcription factor in sugarcane was involved in biotic and abiotic stress responses[J]. Scientific Reports,2020,10(1):20964.
[49] LIU Y,YANG T Y,LIN Z K,GU B J,XING C H,ZHAO L Y,DONG H Z,GAO J Z,XIE Z H,ZHANG S L,HUANG X S. A WRKY transcription factor PbrWRKY53 from Pyrus betulaefolia is involved in drought tolerance and AsA accumulation[J]. Plant Biotechnology Journal,2019,17(9):1770-1787.
[50] 車永梅,孫艷君,盧松沖,趙方貴,侯麗霞,劉新. AtWRKY40參與擬南芥干旱脅迫響應過程[J]. 植物生理學報,2018,54(3):456-464.
CHE Yongmei,SUN Yanjun,LU Songchong,ZHAO Fanggui,HOU Lixia,LIU Xin. AtWRKY40 functions in drought stress response in Arabidopsis thaliana[J]. Plant Physiology Journal,2018,54(3):456-464.
[51] CHEN Y H,ZHANG J. Multiple functions and regulatory networks of WRKY33 and its orthologs[J]. Gene,2024,931:148899.
[52] HUANG Y,FENG C Z,YE Q,WU W H,CHEN Y F. Arabidopsis WRKY6 transcription factor acts as a positive regulator of abscisic acid signaling during seed germination and early seedling development[J]. PLoS Genetics,2016,12(2):e1005833.
[53] WANG X P,NIU Y L,ZHENG Y. Multiple functions of MYB transcription factors in abiotic stress responses[J]. International Journal of Molecular Sciences,2021,22(11):6125.
[54] LEE S B,KIM H,KIM R J,SUH M C. Overexpression of Arabidopsis MYB96 confers drought resistance in Camelina sativa via cuticular wax accumulation[J]. Plant Cell Reports,2014,33(9):1535-1546.