中圖分類號:X826 文獻標志碼:A 文章編號:1674-3075(2025)03-0221-11
稀土元素(rareearthelements,REEs)分為輕稀土元素(LREEs)和重稀土元素(HREEs),由17種元素組成,包括15個鑭系元素、釔和鈧。REEs在地殼含量稀少,但分布廣泛,鑒于REEs獨特的磁性、光學性和電學性質,其在生產通訊設備和GPS設備、防御系統、石油行業、醫學領域、汽車行業和玻璃行業等均得到了廣泛應用(Voncken,2016)。稀土資源在開采以及使用過程中處理不當,會使其進入淡水和海洋環境,從而造成潛在風險(Khanetal,2017)。水環境中的REEs殘留可能會危害水生生物,嚴重威脅到水生生態系統的環境安全(Hatjeetal,2016)。Bau和Dulski(1996)首次在水生環境中觀察到REEs含量的增加,發現釓(Gd)濃度與來自工業高發地區的淡水輸入量之間呈正相關關系。相關動物實驗表明,REEs能夠引起組織特異性生物蓄積和肝、肺、腦損傷,同時接觸稀土和酸性污染物可能會加劇以上不良后果(韓高超等,2019)。
目前已有相關學者發現了水體環境中REEs的殘留現象(Tsuruta,2007;Cardonetal,2019),REEs大量開發和使用會污染水生生態環境,但對于其在水生生物體內的積累以及毒性效應的研究尚不全面。因此,本文針對REEs殘留的生物學特性、生物累積性及對健康的影響進行了綜述,重點分析REEs在水體中的來源以及其生物積累對水生生物的生態毒性,并對未來研究方向進行展望。本文一方面為評價REEs對水生生物以及水環境的潛在影響提供科學依據,另一方面也為REEs的水生生物生態毒理學研究拓寬思路。
1水體中稀土元素的來源
1.1 自然來源
中國稀土元素儲量豐富,采礦活動使環境中總稀土的濃度水平急劇上升,最高可達 1000mg/kg ,有潛在的環境風險。通過對海水中REEs特征的觀測和分析證實,大氣濕沉降(atmosphericwetdeposi-tion,AWD)是西太平洋(Behrensetal,2018)及邊緣海(Seoetal,2020)REEs的重要來源。大陸中原本存在的天然粉塵隨著大陸外流輸送到海域中,AWD是從大氣中去除這類物質的一種重要方式,通過AWD清除后經過一系列反應過程最終以降雨的形式返回到地球表面,增加海洋表面稀土的輸入通量(Guanetal,2022)。除此之外,黃土塵、海鹽、巖石和礦物的化學風化(Fonseca,2021)以及磷酸鹽礦物的溶解(Zhuetal,2016)等都可能是水體中REEs的自然成因。
1.2人為來源
水體中REEs的人為來源主要是采礦和礦物加工產生的排放物以及使用REEs的工業過程產生的廢水,稀土資源的不合理開采導致大量稀土資源浪費,影響了周邊水環境的質量,REEs已在采礦和選礦工程的固體廢物(Paulicketal,2017)以及酸性礦山廢水(詹鴻峰等,2020)中被檢測到。城市污水處理系統作為REEs污染的點源接收各種工業和城市污水流,有研究表明廢水處理廠是在水生系統中檢測到的人為Gd的主要來源(Thomsen,2017),廢水中的REEs通過水文過程(如徑流、淋濾)和廢水灌溉進一步擴散到水生生態系統中(金姝蘭和黃益宗,2013)。此外,處置消費后的稀土產品、廢棄電子電氣設備的垃圾填埋場的滲濾液(Gutierrez-Gu-tierrezetal,2015)和使用含稀土元素的肥料和動物飼料(Ramosetal,2016)等人為因素都會增加水體中REEs的含量。
2REEs在水環境中的生物累積
REEs進入水體后會在生物體內進行富集和累積,水生生態系統中REEs濃度的增加可能對棲息在這個系統中的水生生物產生直接或間接的影響,影響的水生生物包括水生微生物、水生植物和水生動物(魚類、腔腸、軟體和甲殼動物等)。
2.1水生微生物中REEs的生物累積
由于微生物中的細菌有巨大的比表面積、豐富的細胞表面官能團和金屬配位功能,真菌可以分泌更多的胞外聚合物,因此可以作為處理REEs的生物吸附劑(Ahmedetal,2015)。根據以往的研究表明,大多數種類的革蘭氏陽性菌比革蘭氏陰性菌和放線菌具有更高的REEs累積能力,因為它們的離子化磷酸基團的含量較高,而且REEs能與羧酸、磷酸和羥基在細胞壁上形成絡合物(盧園園等,2021)。蘇云金芽孢桿菌(Bacillusthuringiensis)對水體中銪(Eu)的吸附特性實驗表明, Eu3+ 的吸附量高達 160mg/g 并且細菌具有良好的再生性和再利用性,但 pHlt;4 時,細菌對 Eu3+ 的吸附特性相對較低(Panetal,2017)。Tsuruta(2007)的研究結果也表明,REEs的生物累積量會隨著 pH 和溶液濃度的升高而增加,過低的pH會影響微生物吸附REEs。Horiike等(2015)從酸性礦山廢水中分離到1株嗜酸菌(Penidiellasp.)T9,培養3d后 pH=2.5? ,將濃度為 100mg/L 的鏑(Dy)降低到 53mg/L ,表明T9具有從礦井排水和工業廢液中回收Dy等稀土的潛力。
2.2水生植物中REEs的生物累積
水生植物中藻類能通過吸附作用,從周圍水域中攝入REEs并累積在體內,達到從水中去除REEs的目的。鄒文強等(2019)以螺旋藻(Spirulina)為研究對象,對模擬礦山廢水中鉺(Er)吸附實驗表明,添加劑量為 2.0g/L 的螺旋藻,對 Er3+ 的吸附去除率為90.73% 。Pinto等(2020)研究了6種海洋大型藻類對REEs的吸附,結果表明綠藻(Ulvalactuca)是唯一能夠有效吸附至少 60% REEs的藻類,在某些情況下吸附率高達 90% ,且所有藻類對LREEs的吸附率大于對HREEs的吸附率,造成此類差異的原因可能與海藻的官能團(羥基、羧基、氨基、硫酸鹽等)有關。這一點也在Gad(2022)和Ramasamy(2019)的研究中證實了,藻類細胞中的某些官能團,例如羥基和羧基能與稀土離子進行離子交換, pH 值增加時,表面官能團的去質子化有利于負電荷基團與正電荷陽離子之間的靜電相互作用。藻類在吸附廢水中REEs有極大的潛力,例如江籬(Gracilaria gracilis)對釔(Y)、鈰(Ce)、釹(Nd)、銪(Eu)和鑭(La)的吸附量 48h 內達到 70% (Jacinto etal,2018);萊茵衣藻(Chlamydomo-nas reinhardtii)對La每天的累積量能達到 27.3mg/kg (Cizkovaetal,2019)。大多數藻類可以再生和再利用,多次吸附后再利用的淡水微藻(Desmodesmusmultivariabilis)仍然對REEs有較高的吸附率(Birun-gi et al,2014)。
2.3水生動物中REEs的生物累積
水生動物通過水和食物將REEs吸收進體內,并在各個器官內累積(Alietal,2019),當其體內的REEs濃度達到一定閾值后,也會對水生生物的生長發育和物質代謝等產生一定的毒理效應。李景喜等(2017)分析了印度洋熱液區深海貽貝(Mytilusgalloprovincialis)對REEs的富集,結果表明Eu和Y的含量較高,濃度分別為1.85與 1.78mg/kg ,且LREEs含量高于HREEs含量。Squadrone等(2020)比較了生長在印度太平洋獅子魚(Pterois spp.)肌肉、肝臟、腎臟中REEs的分布,表明REEs的平均累積程度為腎臟 gt; 肝臟 gt; 肌肉,HREEs在肝臟和肌肉中優先累積,而LREEs在腎臟中優先累積,這說明REEs在不同器官中的富集程度不同,腎臟和肝臟是REEs累積的主要部位,且LREEs對腎臟的親和性更高。Cardon等(2020)將虹鱒(Oncorhynchusmykiss)暴露在稀土Y中,發現虹鱒體內Y的累積順序為:腸 1gt; 肝 gt; 肌肉,這說明Y在腸等內臟器官中優先累積。類似的結果也在稀土對斑馬魚(Daniorerio)(Cuietal,2012)的研究中發現,脊椎動物中內臟器官REEs累積量高于肌肉,表明REEs的生物累積具有物種和組織特異性(Macmillanetal,2017)。除此之外,Car-don等(2019)研究了Y對大型澤(Daphniamagna)、搖蚊(Chironomusriparius)和虹鱒等3種生物的影響,大型滛的生物累積量是其他2種生物的11\~141倍,這也證實了浮游動物對REEs有更高的生物累積值。
3REEs對水生生物的毒性效應
REEs的殘留會對礦區周圍池塘和湖泊等水環境中的水生生物存在潛在毒性,包括急性毒性、氧化毒性、神經毒性、遺傳毒性和胚胎毒性等,破壞水生植物的超微結構會影響植物光合作用,進而破壞水生生態系統的平衡(圖1)。

3.1REEs對水生微生物的毒性效應
微量的REEs可以促進微生物的生長繁殖,過量的REEs會抑制微生物的生長,這種“低促高抑\"的現象被稱為Hormesis效應(王雅波等,2019)。高熙等(2019)用不同濃度的La培養大腸桿菌(EscherichiaColi)發現,La會引發E.Coli生長的Hormesis效應,猜測是菌體內的Mn、Ba、Mo、U這4種元素中的1種或者幾種元素含量的變化引發Hormesis效應。米新宇等(2016)也獲得類似研究結果。此外,REEs對微生物的毒性作用還表現在與酶的硫氫基、硫醇(R-SH)等基團結合,從而破壞細胞內酶的活性,取代細胞結構中結合的金屬離子導致細胞膜損傷,或與DNA上的活性和非活性位點結合抑制轉錄和翻譯過程(邢艷帥和朱桂芬,2017)。吳士筠(2005)研究了La對大腸桿菌 E. coli、金黃色葡萄球菌(Staphulococcusaureus)和枯草芽孢桿菌(Bacillussubtilis)的抑菌作用,結果發現,當 La3+ 濃度達到1.0×10-4mol/L 時有明顯抑菌效果,推測REEs可以與菌中的轉移核糖核酸(tRNA)中的磷酰基鍵結合,通過抑制核酸酶的活性和功能從而抑制細菌生長;La還能夠導致 E. Coli基因組DNA降解或交聯,主要表現在DNA電泳帶型熒光減弱、不清晰或滯留于點樣孔而不能泳出(汪承潤等,2006);Liu等(2004)認為 La3+ 實質上改變了負責細胞通透性的外層細胞膜的結構,在掃描電子顯微鏡(SEM)觀察到La3+ 對細胞外膜的損傷,其原因是 La3+ 與 Ca2+,Mg2+ 離子半徑相近,具有相似的配體特性,因此可以取代并占據 Ca2+ 等金屬離子的結合位點。
3.2REEs對水生植物的毒性效應
植物作為生態系統中的“生產者”,是轉移REEs的重要初始介質。微量的REEs能夠促進水生植物的生長,過量的REEs不僅會抑制藻類的生長,對藻類其他的生理生化過程也會產生很大的影響(表1),如破壞光合系統、抑制細胞呼吸作用、膜結構受到損傷等(Rezankaetal,2016)。水生植物對外源REEs有很強的吸附能力,并且可以通過代謝依賴性累積去除水中的REEs。細胞壁是吸附REEs的主要器官,當REEs被吸附到細胞壁之后,可能再通過 Ca2+ 通道或者 Ca2+ 轉運體進入植物細胞,進而影響營養物質進出細胞,纖維素和果膠中含有更多的REEs進一步證實了這一發現(Fu etal,2014;Zhang etal,2015)。Paoli等(2014)認為一定量的REEs能夠影響植物細胞的超微結構,提高膜的穩定性和通透性,但高濃度的REEs會損傷植物細胞的超微結構,減少類囊體的生成,增加細胞脂肪顆粒,從而導致細胞膜粗糙甚至破裂,致使機體活力和光合性能下降。抗氧化酶的活性變化也可以被認為是植物面對REEs脅迫下的應激反應,植物體內營養元素(例如吲哚乙酸、赤霉素和細胞分裂素)含量的下降會導致可溶性蛋白的含量降低,進而影響抗氧化酶的活性(張海娜等,2019)。

3.3REEs對水生動物的毒性效應
3.3.1REEs對水生動物的急性毒性影響REEs對水生生物的急性毒性研究是確定其有害性和評價毒性等級的關鍵。表2總結了稀土元素對水生動物的急性毒性,例如在REEs對水(Hydraattenuata)的 96h 急性毒性測定中,11種REEs的 LC50 值均較低,揭示了H.attenuata在環境中對REEs暴露的內在敏感性;不同的水生動物對同一種REE的耐受程度也不盡相同,其中La對孔雀魚(Poeciliareticulata)的毒性為中毒,而對稀有餉鯽(Gobiocyprisrarus)的毒性為高毒。

3.3.2REEs對水生動物抗氧化防御系統的影響REEs能夠影響生物機體的抗氧化防御系統,導致機體活性氧等自由基(ROS)的增加,使抗氧化酶的活性發生變化,并且REEs同時具有抗氧化和氧化特性,這取決于其在水中的濃度(Freitasetal,2020)。超氧化物歧化酶(SOD)、過氧化氫酶(CAT)和谷胱甘肽-S-轉移酶(GST)能夠形成有效保護屏障,防止細胞氧化損傷,被普遍認為是環境污染的有效生物標志物。有研究表明,在La暴露下,玻璃鰻(Anguillaanguilla)的丙二醛(MDA)水平和CAT活性顯著下降,乙酰膽堿酯酶(AChE)活性增強,長時間暴露在 La3+ 中會導致乙酰膽堿水解率逐漸下降,La不僅能夠引起A.anguilla的氧化損傷,并造成AChE活性紊亂,進而對神經系統造成損傷(Figueiredo etal,2018)。司萬童等(2017)研究稀土尾礦庫周邊受污染的水域濕地中花背蟾蜍(BufoRaddei)的響應效應,結果顯示B.Raddei精巢和卵巢中MDA含量、谷胱甘肽過氧化物酶 (GPX) 、GST和CAT活性顯著升高,還原型谷胱甘肽(GSH)含量下降。Fre-itas等(2020)將貽貝(Mytilus galloprovincialis)暴露于Nd中,發現GSH含量降低,而氧化型谷胱甘肽(GSSG)含量增加,表明受到Nd污染的生物體內氧化還原穩態失衡,同樣Perrat等(2017)發現了Gd對M.galloprovincialis也有相似的影響。
3.3.3REEs對水生動物神經毒性效應對神經細胞和嚙齒類動物的毒理學研究表明,REEs暴露與細胞凋亡和死亡、氧化應激損傷、神經元損傷和神經行為改變有關,如空間學習能力、運動行為的改變和記憶受損(Mladetal,2020)。Han等(2022)研究發現在La暴露下,秀麗線蟲(Caenorhabditiselegans)中調節行為和運動功能的神經遞質轉運體和受體(谷氨酸、血清素和多巴胺)受到了抑制,其胞體和樹突神經元損傷或斷裂,以及 a -突觸核蛋白在神經元核周圍和突觸處異常累積,而且La暴露下的C.elegans表現出明顯的行為異常(頭部扭動、體彎曲和咽部抽吸),表明La導致C.elegans神經元有毒性損傷以及行為缺陷。除此之外,AChE參與了神經遞質乙酰膽堿(ACh)的快速水解在突觸連接處終止沖動傳遞,已被廣泛用作水生態毒理學中神經毒性的指示劑,例如暴露在REEs中的文蛤(Ruditapesdecussatus)(SturlaLompréetal,2021)的AChE活性受到抑制,表明REEs具有明顯的神經毒性。
3.3.4REEs對水生動物遺傳毒性效應REEs作用可能會造成生物體的遺傳毒性,遺傳物質在分子水平、染色體水平和堿基水平上受到損傷,主要分為DNA損傷、染色體損傷和紅細胞核異常。黃濤等(2019)研究稀土尾礦庫滲漏水污染對花背蟾蜍(Strauch-buforaddei)胚后發育影響時發現,暴露在水環境中的蝌蚪血細胞DNA損傷程度加重,染色體發生斷裂,表明稀土尾礦滲漏水對S.raddei具有遺傳毒性。La對G.rarus紅細胞微核的遺傳毒性研究結果顯示,微核紅細胞率、紅細胞核異常率和總核異常率都受到嚴重影響(Qiuetal,2020)。Hanana等(2018)將Dreissena polymorpha暴露于( ΔSm) 和Y中28d后,檢測到在低濃度( 10μμ) 的Y中DNA鏈斷裂水平增加,而高濃度的 Sm 導致DNA鏈斷裂水平降低,可能是由于DNA修復活性降低,期間還檢測到Y降低了細胞環氧化酶(COX)的表達和細胞色素C氧化酶 1(CO1)mRNA 水平,細胞內ROS水平的改變也可揭示REEs的潛在遺傳毒性。此外, D. rerio在濃度為10μmol/L 的 Ce3+ 溶液中暴露28d后,引起了其肝臟細胞內DNA的斷裂、插入或缺失片段、DNA加合物等多種形式的DNA損傷,以及DNA甲基化,表明高劑量下Ce3+ 能夠誘導D.rerio的遺傳毒性(賀彥斌等,2018)。3.3.5REEs對水生動物胚胎毒性效應水生動物早期生命階段接觸REEs后的多重毒性可以反映低劑量的REEs暴露的影響,其毒理學終點可以是受精成功率、胚胎發育、心跳變化、運動行為和有絲分裂活性等。淡水甲殼動物大型(Daphnia magna)暴露于濃度小于 0.22μmol/L 的Ce中,Ce對親本平均孵化率沒有影響,但在 0.86μmol/L 濃度下,三胎的幼體孵化率顯著降低(Maetal,2016)。而暴露于 Ce3+ 的 G. (20rarus毒性效應實驗發現,低濃度的 Ce3+ 暴露縮短了G.rarus胚胎孵化時間,而隨著時間延長,所有的 Ce3+ 濃度組孵化率都有降低,且自主運動頻率隨濃度升高而降低,表明低濃度 Ce3+ 作用使卵膜變薄導致胚胎提前孵化,高濃度 Ce3+ 接觸改變膜結構增加了膜通透性,導致進入胚胎內的 Ce3+ 增加,致使胚體受損死亡(邱逸忱,2020)。Moreira等(2020)評估了Y對牡蠣(Crassostreagigas)胚胎毒性,暴露于最高Y濃度(160μg/L)48h 的 C. gigas胚胎發育受阻和延遲。在REEs暴露下的海膽(Paracentrotuslividus)受精率下降,誘導了胚胎發育異常并且抑制有絲分裂活性,增加了有絲分裂畸變(Pagano etal,2016)。
4總結與展望
REEs可以通過多種來源進入水生生態系統,如礦山廢水排放、污水處理廠和風化等,并且REEs有一定的生物利用率和生物累積性。目前,REEs對水生生物的毒性研究表明:REEs會通過各種途徑富集在水生生物體內,對水生生物造成嚴重危害,包括急性毒性、氧化毒性、神經毒性、胚胎毒性和遺傳毒性等。值得關注的是,大多數REEs被吸附在沉積物以及其他水生植物和動物中,可通過醫源性、吸入性和職業性的多種攝入途徑進入人體。
目前關于REEs來源、污染現狀以及危害的研究已較為深入,但生態毒理學相關研究工作仍處于探索階段,本文就開展REEs對水生生物的生態毒理效應研究提出以下展望:(1)研究不僅局限于單一稀土元素,而應加強REEs及其化合物對水生生物毒性的研究;(2)不同種類的水生生物對REEs的敏感性存在較大差異,迫切需要豐富REEs對不同生命形態的毒性研究;(3)REEs與其他污染物共存時會造成復合污染,研究其復合污染物對水生生物的生態毒理效應對于建立完整可靠的環境風險評估有重要意義;(4)稀土開采產生的廢水及礦山尾水會造成礦區周邊水體污染,研究典型礦區(如贛南離子型稀土礦)周圍水生生物的生態效應為環境質量評價提供重要的參考價值,為進一步加強稀土礦區污染防控和環境保護提供理論依據。
參考文獻
蔡三娟,付永陽,閔海麗,等,2012.鈰在水鱉葉中的亞細胞分 布、賦存形態及毒理效應分析[J].中國稀土學報,30(4): 476-481.
CAISJ,FUYY,MINHL,etal,2012.Subcellulardistribution,chemical formsand phytotoxityof ceriumin Hydrocharis dubia[J].JournaloftheChinese SocietyofRare Earths,30(4):476-481.
高熙,劉雅瓊,燕晶晶,等,2019.鑭-大腸桿菌毒物興奮效應 機制探索[J].中國稀土學報,37(3):371-380.
GAO X,LIUY Q, YANJJ, et al, 2019.A preliminary study on mechanismofhormesisinlanthanum-Escherichiacoli[J]. Journalof theChinese SocietyofRareEarths,37(3):371- 380.
韓高超,寧鈞宇,于洲,等,2019.稀土元素鑭對健康影響的危 害評估[J].毒理學雜志,33(6):439-443.
HANGC,NINGJY,YUZ,etal,2019.Hazardassessmento the effects of rare earth element lanthanum on health[J]. Journal of Toxicology, 33(6):439-443.
賀彥斌,臺培東,孫梨宗,等,2018.稀土元素鈰對斑馬魚肝臟 的遺傳毒性[J].生態學雜志,37(9):2786-2793.
HEYB,TAIPD,SUNLZ,etal,2018.Genotoxicityofrare earth element cerium on zebrafish(Danio rerio) livers[J]. Chinese Journal of Ecology, 37(9):2786-2793.
黃濤,求瑞娟,蘭宗寶,等,2019.稀土尾礦庫滲漏水污染對花 背蟾蜍胚后發育的毒性作用[J].南方農業學報,50(2): 412-417.
HUANG T,QIU RJ,LAN Z B, et al, 2019. The toxic effects of leakage water from rare earth tailings reservoir on the postembryonic development of Strauchbufo raddei[J]. Journal of Southern Agriculture, 50(2):412-417.
金姝蘭,黃益宗,2013.稀土元素對農田生態系統的影響研究 進展[J].生態學報,33(16):4836-4845.
JIN S L, HUANG Y Z, 2013.A review on rare earth elements in farmland ecosystem[J]. Acta Ecologica Sinica,33(16): 4836-4845.
李景喜,孫承君,蔣鳳華,等,2017.印度洋熱液區貽貝及棲息 沉積物中金屬元素的特征分析[J].分析化學,45(9): 1316-1322.
LI JX, SUNC J, JIANG F H, et al, 2017. Characteristics analysis of metal elements in sediments and habitat mussels from India Ocean hydrothermal area[J]. Chinese Journal of Analytical Chemistry, 45(9):1316-1322.
盧桂蓉,王應軍,范子奇,2021.稀土元素La(II)對銅綠微囊 藻生長和生理特性的影響[J].生態毒理學報,16(6):256- 267.
LU G R, WANG Y J, FAN Z Q, 2021. Effects of La(II) on growth and physiological characteristics of Microcystis aeruginosa[J]. Asian Jourmal of Ecotoxicology, 16(6): 256- 267.
盧園園,陳龍照,余倩怡,等,2021.尖孢鐮刀菌(Fusarium oxysporum)誘導礦化回收稀土離子La(II)[J].微生物學 報, 61(6):1621-1631.
LU Y Y, CHENL Z, YU Q Y, et al, 2021. Fusarium oxysporum induces mineralization recovery rare earth ions Lanthanum (I)[J]. Acta Microbiologica Sinica, 61(6):1621-1631.
米新宇,劉雅瓊,袁蘭,等,2016.稀土元素鏑對大腸桿菌生長 效應研究[J].實驗技術與管理,33(10):64-67.
MI X Y, LIU Y Q, YUAN L, et al, 2016. Study of rare-earth element Dy on growth of E.coli[J]. Experimental Technology and Management, 33(10):64-67.
邱逸忱,2020.氯化鈰對稀有餉鯽急性、亞慢性及慢性毒性研 究[D].武漢:武漢輕工大學.
司萬童,蔣海明,栗利曼,等,2017.花背蟾蜍性腺抗氧化酶對 稀土尾礦庫污染脅迫的響應[J].生態毒理學報,12(2): 209-215.
SI W T, JIANG HM,LI L M, et al, 2017. The response of antioxidant enzyme in Bufo raddei gonad to rare earth tailings polltion stress[J]. Asian Journal of Ecotoxicology,12(2): 209-215.
汪承潤,陳華波,楊帆,等,2006.稀土鑭離子對大腸桿菌基因 組DNA的影響[J].癌變 畸變 突變,18(2):116-118.
WANG C R, CHEN HB, YANG F, et al, 2006.Effects of lanthanide ions in rare earths on genomic DNA of E.coli[J]. Carcinogenesis, Teratogenesis amp; Mutagenesis, 18(2):116- 118.
王雅波,劉占英,張冬艷,等,2019.稀土離子對微生物Hormesis效應機制的研究進展[J].中國稀土學報,37(4): 402-408.
WANG Y B, LIU Z Y, ZHANG D Y, et al, 2019.Research progress on effects mechanisms of rare earth ions on microbial hormesis[J]. Journal of the Chinese Society of Rare Earths,37(4):402-408.
吳士筠,2005.La(I)的抑菌作用研究[J] .中南民族大學學報 (自然科學版),24(3):27-30.
WU S J, 2005. Studies on the bacterionstasis of La(II) [J]. Journal of South-Central University for Nationalities (Natural Science Edition), 24(3):27-30.
邢艷帥,朱桂芬,2017.重金屬對水生生物的生態毒理效應及 生物耐受機制研究進展[J].生態毒理學報,12(3):13-26.
XING Y S, ZHU G F, 2017. Advances on ecotoxicological effectsof heavy metals to aquatic organisms and the tolerancemechanisms of aquatic organisms[J]. Asian Journal of Ecotoxicology, 12(3):13-26.
楊革,孔慶娥,2002.鑭與釹對隱甲藻的生長、DHA合成及固 氮活性的影響[J].中國稀土學報,20(增刊1):168-170.
YANG G, KONG Q E, 2002.Effect of La3+ and Nd3+ on growth, DHA yield and nitrogenase activity of Crypthecodinium cohnii[J]. Journal of the Chinese Society of Rare Earths, 20(Suppl.1):168-170.
詹鴻峰,王華生,潘禹,等,2020.離子型稀土礦礦山廢水檢測 與分析[J].中國稀土學報,38(4):550-556.
ZHAN H F, WANG H S, PAN Y, et al, 2020. Measurement and analysis of ion-type rare earth mine wastewater[J]. Journal of the Chinese Society of Rare Earths,38(4):550-556.
張海娜,魯向暉,金志農,等,2019.高溫條件下稀土尾砂干旱 對4種植物生理特性的影響[J].生態學報,39(7):2426- 2434.
ZHANG HN, LU X H, JIN Z N, et al, 2019. Effects of drought on physiological characteristics of seedlings of four species grown on rare earth milltailings at high temperatures [J]. Acta Ecologica Sinica, 39(7):2426-2434.
鄒文強,舒慶,許寶泉,2019.螺旋藻對稀土餌離子的吸附特 性研究[J].中國環境科學,39(2):674-683.
ZOU W Q, SHU Q, XU B Q,2019. Adsorption characteristics of Spirulina to rare earth erbium ions[J]. China Environmental Science,39(2):674-683.
AHMED M B, ZHOU J L, NGO H H, et al, 2015.Adsorptive removal of antibiotics from water and wastewater: progress and challenges[J]. Science of the Total Environment, 532:112-126.
ALI H, KHAN E, ILAHI I,2019. Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation[J]. Journal of Chemistry, (1):6730305.
BAU M, DULSKI P, 1996. Anthropogenic origin of positive gadolinium anomalies in river waters[J]. Earth and Planetary Science Letters,143(1/2/3/4):245-255.
BEHRENS M K, PAHNKE K, PAFFRATH R, et al, 2018. Rare earth element distributions in the west Pacific: trace element sources and conservative vs.non-conservative behavior[J]. Earth and Planetary Science Letters, 486: 166- 177.
BERGSTEN-TORRALBA L R, MAGALHAES D P, GIESE E C,et al,2020. Toxicity of three rare earth elements, and their combinations to algae,microcrustaceans, and fungi [J].Ecotoxicology and Environmental Safety, 201: 110795.
BIRUNGI Z S, CHIRWA E M N, 2014. The kinetics of uptake and recovery of lanthanum using freshwater algae as biosorbents: comparative analysis[J]. Bioresource Technology,160:43-51.
BLAISE C, GAGNE F, HARWOOD M, et al, 2018. Ecotoxicity responses of the freshwater cnidarian Hydra attenuata to 11 rare earth elements[J]. Ecotoxicology and Environmental Safety,163:486-491.
BLINOVA I, LUKJANOVA A, MUNA M, et al, 2018. Evaluation of the potential hazard of lanthanides to freshwater microcrustaceans[J]. Science of the Total Environment, 642:1100-1107.
CARDON P Y, ROQUES O, CARON A, et al, 2020. Role of prey subcellular distribution on the bioaccumulation of yttrium (Y) in the rainbow trout[J]. Environmental Pollution, 258:113804.
CARDON P Y, TRIFFAULT-BOUCHET G, CARON A, et al, 2019.Toxicity and subcellular fractionation of ytrium in three freshwater organisms: Daphnia magna, Chironomus riparius, and Oncorhynchus mykiss[J]. ACs Omega, 4(9): 13747-13755.
CHU W Y, CAI S J,FUY Y, et al,2014. The toxicity of cerium nitrate to Elodea canadensis: subcelllar distribution, chemical forms and physiological effects[J]. Acta Physiologiae Plantarum, 36(9):2491-2499.
CIZKOVA M, MEZRICKY D, RUCKI M, et al, 2019. Biomining of lanthanides from red mud by green microalgae [J].Molecules,24(7):1356.
CUI JA, ZHANG ZY,BAI W, et al, 2012. Effects of rare earth elements Ia and Yh on the mornhnlnoical and functinnal development of zebrafish embryos[J]. Journal of Environmental Sciences,24(2):209-213.
DOLEZELOVA P, MACOVA S, PLHALOVA L, et al, 2011. The acute toxicity of clove oil to fish Danio rerio and Poecilia reticulata[J]. Acta Veterinaria Brno, 80(3):305-308.
FIGUEIREDO C, GRILO T F, LOPES C, et al, 2018. Accumulation,elimination and neuro-oxidative damage under lanthanum exposure in glass eels (Anguilla anguilla)[J]. Chemosphere,206:414-423.
FONSECA R, ARAUJO JF, PINHO C G, 2021. Importance of the spatial distribution of rare earth elements in the bottom sediments of reservoirs as a potential proxy for tracing sediments sources: a case study in the Dominican republic[J]. Geosciences,11(12):490.
FREITAS R, COSTA S, CARDOSO C E D, et al, 2020. Toxicological effects of the rare earth element neodymium in Mytilus galloprovincialis[J]. Chemosphere,244:125457.
FU Y Y, LIF F, XU T, et al, 2014.Bioaccumulation, subcellular, and molecular localization and damage to physiology and ultrastructure in Nymphoides peltata (Gmel.) O. Kuntze exposed to yttrium[J]. Environmental Science and Pollution Research International, 21(4):2935-2942.
GAD N S, 2022. Evaluation for biosorption of rare earth elements from gebel serbal granite using different types of algae[J].Acta Ecologica Sinica, 42(6):572-582.
GOECKE F, VITOVA M, LUKAVSKY J, et al, 2017. Effects of rare earth elements on growth rate, lipids, fatty acids and pigments in microalgae[J]. Phycological Research, 65 (3):226-234.
GUAN W K,HE H J, ZHANG J, 2022. Sources and fluxes of rare earth elements in wet deposition at a Chinese coastal city downstream of the Asian continental outflow[J]. Atmospheric Environment, 269:118843.
GUTIERREZ-GUTIERREZ S C, COULON F, JIANG Y, et al, 2015.Rare earth elements and critical metal content of extracted landfilled material and potential recovery opportunities[J]. Waste Management, 42:128-136.
HAN G C, JING H M, ZHANG W J, et al, 2022. Effects of lanthanum nitrate on behavioral disorder,neuronal damage and gene expression in different developmental stages of Caenorhabditis elegans[J]. Toxicology, 465:153012.
HANANA H, TURCOTTE P, DUBE M, et al, 2018. Response of the freshwater mussel, Dreissena polymorpha to sub-lethal concentrations of samarium and yttrium after chronic exposure[J]. Ecotoxicology and Environmental Safety, 165:662-670.
HANANA H, TARANU Z E, TURCOTTE P, et al, 2021. Sublethal effects of terbium and praseodymium in juvenile 146042.
HATJE V, BRULAND K W, RUSSELL FLEGAL A,2016. Increases in anthropogenic gadolinium anomalies and rare earth element concentrations in San francisco bay over a 20 year record[J]. Environmental Science amp; Technology, 50(8):4159-4168.
HORIIKE T, YAMASHITA M, 2015. A new fungal isolate, Penidiella sp. strain T9,accumulates the rare earth element dysprosium[J]. Applied and Environmental Microbiology, 81(9):3062-3068.
HUAD,WANGJW, YUD H, et al,2017.Lanthanum exerts acute toxicity and histopathological changes in gill and liver tissue of rare minnow (Gobiocypris rarus)[J]. Ecotoxicology,26(9):1207-1215.
HUANG Z H, GAO N, ZHANG S Y, et al, 2022. Investigating the toxically homogenous effects of three lanthanides on zebrafish[J]. Comparative Biochemistry and Physiology Part C: Toxicology amp; Pharmacology,253:109251.
JACINTO J, HENRIQUES B, DUARTE A C, et al, 2018. Removal and recovery of Critical Rare Elements from contaminated waters by living Gracilaria gracilis[J]. Journal of Hazardous Materials, 344:531-538.
KHAN A M,BEHKAMI S, YUSOFF I, et al, 2017. Geochemical characteristics of rare earth elements in different types of soil: a chemometric approach[J]. Chemosphere,184: 673-678.
LI M S, ZHUANG L L, ZHANG G H, et al, 2021. Association between exposure of light rare earth elements and outcomes of in vitro fertilization-embryo transfer in North China[J]. Science of the Total Environment, 762:143106.
LIU P, LIU Y, LU Z X,et al, 2004. Study on biological effect of La3+ on Escherichia coli by atomic force microscopy [J]. Journal of Inorganic Biochemistry, 98(1):68-72.
MA YH, WANG JK,PENG C, et al,2016. Toxicity of cerium and thorium on Daphnia magna[J]. Ecotoxicology and Environmental Safety, 134:226-232.
MACMILLAN G A, CHETELAT J, HEATH J P, et al, 2017. Rare earth elements in freshwater, marine, and terrestrial ecosystems in the eastern Canadian Arctic[J]. Environmental Science Processes amp; Impacts,19(10):1336-1345.
MANUSADZIANAS L, VITKUS R, GYLYTE B, et al, 2020. Ecotoxicity responses of the macrophyte algae Nitellopsis obtusa and freshwater crustacean Thamnocephalus platyurus to 12 rare earth elements[J]. Sustainability,12(17): 7130.
MOREIRA A, HENRIQUES B, LEITE C, et al, 2020. Potential impacts of lanthanum and yttrium through embryotoxicity assays with Crassostrea gigas[J]. Ecological Indicators,108:105687.
PAGANO G, GUIDA M, SICILIANO A, et al, 2016. Comparative toxicities of selected rare earth elements: sea urchin embryogenesis and fertilization damage with redox and cytogenetic effects[J].Environmental Research,147:453-460.
PAN X H, WU W, JIANL, et al, 2017. Biosorption and extraction of europium by Bacillus thuringiensis strain[J]. Inorganic Chemistry Communications, 75:21-24.
PAOLI L, FIORINI E, MUNZI S, et al, 2014. Uptake and acute toxicity of cerium in the lichen Xanthoria parietina[J]. Ecotoxicology and Environmental Safety, 104:379-385.
PAULICK H,MACHACEK E, 2017. The global rare earth element exploration boom: an analysis of resources outside of China and discussion of development perspectives[J]. Resources Policy, 52:134-153.
PERRAT E, PARANT M, PY J S, et al, 2017. Bioaccumulation of gadolinium in freshwater bivalves[J]. Environmental Science and Pollution Research, 24(13):12405-12415.
PINTO J, HENRIQUES B, SOARES J, et al, 2020. A green method based on living macroalgae for the removal of rare-earth elements from contaminated waters[J]. Journal of Environmental Management, 263:110376.
QIU Y C,HUA D, LIU J, et al, 2020. Induction of micronuclei, nuclear anomalies,and dimensional changes in erythrocytes of the rare minnow (Gobiocypris rarus) by lanthanum[J]. Environmental Science and Pollution Research International, 27(25):31243-31249.
RAMASAMY D L, PORADA S, SILLANPAA M, 2019. Marine algae: a promising resource for the selective recovery of scandium and rare earth elements from aqueous systems [J]. Chemical Engineering Journal, 371:759-768.
RAMOS S J, DINALI G S, OLIVEIRA C, et al, 2016. Rare earth elements in the soil environment[J]. Current Pollution Reports,2(1):28-50.
REZANKA T, KAINEDER K, MEZRICKY D, et al, 2016. The effect of lanthanides on photosynthesis, growth, and chlorophyll profile of the green Alga Desmodesmus quadricauda[J]. Photosynthesis Research,130(1/2/3):335-346.
SEO H, KIMG, 2020. Rare earth elements in the East Sea (Japan sea): distributions,behaviors,and applications[J]. Geochimica et Cosmochimica Acta, 286:19-28.
SHEN F, WANG L H, ZHOU Q, et al, 2018. Effects of lanthanum on Microcystis aeruginosa: attention to the changes in composition and content of cellular microcystins[J]. Aquatic Toxicology, 196:9-16.
SICILIANO A, GUIDA M, SERAFINI S, et al, 2021. Longterm multi-endpoint exposure of the microalga Raphidocelis subcapitata to lanthanum and cerium[J]. Science of the Total Environment, 790:148229.
SQUADRONE S,BRIZIO P, STELLA C, et al,2020. Differential bioaccumulation of trace elements and rare earth elements in the muscle, kidneys, and liver of the invasive indo-Pacific lionfish (Pterois spp.) from Cuba[J]. Biological Trace Element Research,196(1):262-271.
STURLA LOMPRE J, MOLEIRO P, DE MARCHI L, et al, 2021.Bioaccumulation and ecotoxicological responses of clams exposed to terbium and carbon nanotubes: comparison between native (Ruditapes decussatus) and invasive (Ruditapes philippinarum) species[J]. Science of the Total Environment, 784:146914.
SUN D, HE N, CHEN Q,et al, 2019. Effects of lanthanum on the photosystem II energy fluxes and antioxidant system of Chlorella vulgaris and Phaeodactylum tricornutum[J]. International Journal of Environmental Research and Public Health, 16(12):2242.
TAYLOR N S, MERRIFIELD R, WILLIAMS T D, et al, 2016. Molecular toxicity of cerium oxide nanoparticles to the freshwater Alga Chlamydomonas reinhardtii is associated withsupra-environmental exposureconcentrations[J] Nanotoxicology, 10(1):32-41.
THOMSEN H S, 2017. Are the increasing amounts of gadolinium in surface and tap water dangerous?[J]. Acta Radiologica, 58(3):259-263.
TSURUTA T, 2007.Accumulation of rare earth elements in various microorganisms[J]. Journal of Rare Earths, 25(5): 526-532.
VONCKEN JHL,2016. The Rare Earth Elements: an Introduction[M]. Cham: Springer International Publishing.
ZHANG J J, ZHANG T T, LU Q Q, et al, 2015. Oxidative effects,nutrients and metabolic changes in aquatic macrophyte,Elodea nuttalli, following exposure to lanthanum [J].Ecotoxicology and Environmental Safety, 115: 159- 165.
ZHU Z Z, LIU C Q, WANG Z L, et al, 2016. Rare earth elements concentrations and speciation in rainwater from Guiyang, an acid rain impacted zone of Southwest China [J]. Chemical Geology, 442:23-34.
ZINICOVSCAIA I, CEPOI L,RUDI L, et al, 2021. Accumulation of dysprosium, samarium, terbium, lanthanum, neodymium and ytterbium by Arthrospira platensis and their effects on biomass biochemical composition[J]. Journal of Rare Earths, 39(9):1133-1143.
(責任編輯熊美華)
Research Progress on the Toxic Effects of Rare Earth Elements on Aquatic Organisms
ZENG Luxuel,2,DONG Weil, 2
(1. Jiangxi Key Laboratory of Mining and Metallurgy Environmental Polltion Control, Ganzhou , P.R. China; 2. School of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou ,P.R. China)
Abstract: Accumulation and migration of rare earth elements (REEs) in the aquatic environment has resulted in bioaccumulation and toxic effects on aquatic organisms.In this study, we characterized sources of REEs to water bodies and reviewed their toxic effects on aquatic organisms of diffrent trophic levels, including microorganisms, plants,and animals. Our review concludes with an outlook for future research. Our objective was to provide a scientific basis for preventing and controlling REE pollution around mining areas and guide future research on the aquatic ecotoxicity ofREEs. Inputs of REEs to the aquatic environment are atributed to bacteria,and anthropogenic sources that include emissions from mining and mineral processing,and wastewater generated by industrial processes using REEs.The known toxic effect of REES on bacteria include disruption of cell membrane integrity and enzyme activity, and inhibition of gene transcription and translation. REEs inhibit plant growth by decreasing photosynthetic efficiency, damaging cellultrastructure, reducing enzyme activity.REEs induce acute toxicity, oxidative stres, neurotoxicity, embryotoxicity, and genotoxicity in aquatic animals, resulting in varying degrees of damage to the organizational structure and functional integrity of aquatic organisms.Future research should focus on the toxic effects of REEs and REE compounds on aquatic organisms occupying different trophic levels, and the ecological effects on aquatic organisms in mining areas (such as the ion-type rare earth mine in southern Jiangxi Province).
Key words :rare earth elements; bioaccumulation; aquatic organisms; toxic effects