
中圖分類號:S917 文獻標志碼:A 文章編號:1674-3075(2025)03-0193-12
生物絮團是一種由浮游植物、游離和附著細菌以及顆粒有機物組成的聚集體,外觀呈現不規則的絮狀(Hargreaves,2006)。生物絮團技術(bioflocstechnology,BFT)是一種向水產養殖系統添加額外碳源,或通過提高飼料碳含量來凈化水質的技術(Crabetal,2010)。水體中的碳源刺激異養細菌的生長代謝,使細菌將水體中的氮轉換為微生物蛋白,從而凈化水質(Avnimelech,1999)。BFT降氮效率高,與其他類型的水質凈化技術相比更經濟廉價(Avnimelech,2006),被廣泛應用于許多行業。水產行業也不例外,其迫切需要低成本處理養殖尾水的技術,因此BFT的相關研究與應用在水產行業迅速增多。
近年來,水產養殖行業發展迅速,養殖生產集約化程度更高,飼料的投入也更多(Boyd,2003)。大量投入的飼料大幅度提高了生產力(水產動物產量),但水體受到了嚴重危害,產生了諸多環境問題。研究表明,現在養殖過程中投喂的飼料約有 70% 的氮沒有被養殖動物攝入吸收,導致水體污染(羅國芝等,2013)。BFT技術構建的養殖系統相較于傳統養殖模式,能夠顯著減少系統內外的物質交換(Bossieretal,2017),更高效地利用系統內循環的營養物質,減少污染。此外,BFT還被許多研究證明系統內復雜的微生物相互作用可能對增強水生生物的免疫反應具有正面作用(Kimetal,2014;Martinsetal,2020)。在過去的十幾年,BFT發展迅速,積累大量杰出的科學研究成果,但研究成果較為駁雜,相關研究者與從業人員自行梳理已有的重要觀點和結論的難度較高。因此,對生物絮團的相關研究進行梳理總結非常有必要。
由于學術成果數量迅速增長,依靠人力了解所有科研成果愈發困難。學者們采用不同的文獻綜述方法來理解和整理早期研究(Ellegaardetal,2015)。其中,文獻計量學運用數學算法對大量文獻進行分析和可視化處理,反映研究的方向和脈絡(Chenetal,2010)。目前醫學(Chenetal,2012)、信息學(Houetal,2018)、生態學(Ouyangetal,2018)等領域都采用了計量學方法對前人成果進行了出色的總結。而國內對近年來豐富的生物絮團研究成果的綜述文章較少。本文分析了2009—2022年webofScience數據庫中核心期刊的文章,梳理生物絮團相關文獻,以期為行業內相關研究提供參考。
1數據來源與分析方法
1.1 數據來源
WebofScience數據庫中的核心期刊文章作為總數據庫。文獻檢索式:主題
“Biofloc”。檢索時間段為2009一2022年,共得到950條文獻數據。將此數據導入CiteSpace6.1R6軟件中進行統計分析。
1.2數據分析
通過CiteSpace軟件進行分析。根據文獻中心性、關鍵詞在所有文獻中的出現頻次和共現性進行可視化分析。文獻中心性由Chen等(2010)提出,用于衡量文獻在某一方向上的重要性,體現了一篇文獻在兩個領域間的橋梁作用的重要程度。中心性越高,文獻越重要,通常中心性高于0.1算重要。參考文獻聚類結果通過模塊化(Modularity)和Silhou-ette 兩個指標呈現。網絡模塊化采用
值來評估,
值為0\~1;當 Qgt;0.3 時,認為表現顯著。Silhouette值用于評估聚類效果,取值為-1\~1,越接近1聚類越可靠,一般大于0.7認為結果可靠(Chen,2006)。
2結果與分析
2.1主要國家生物絮團研究成果
發文量與中心性的研究結果顯示(表1、圖1),2009一2022年生物絮團領域的學術文章增長迅速,2016年后增速更快。此期間,巴西發文量居首,與其他國家差距明顯;中國位列第2,與巴西差距較大;美、印、墨等國發文量差距較小。從中心性看,墨西哥文獻中心性最高,或對生物絮團全球共研有重要貢獻。絕大多數國家文章中心度超0.1,說明各國在該領域均有卓越貢獻。


在國家與關鍵詞頻次共線圖(圖2)中,菱形節點代表關鍵詞,圓形節點代表國家。關鍵詞圖譜顯示,巴西的研究與凡納濱對蝦(Litopenaeusvan-namel)、有限交換(limiteddischange)關系密切。凡納濱對蝦在圖譜中節點較大,說明巴西對生物絮團相關研究多用在蝦類上。中國相關研究的關鍵詞主要為率(ratio)以及活性污泥(activatedsludge)。其中,率根據文獻查閱可以得出主要集中在氮轉化(Luoetal,2013;Huetal,2014)、動物生長性能(Liuetal,2014)等方面。在該圖譜中活性污泥僅與中國的連接,而許多重要關鍵詞如陽離子橋聯理論(cat-ion bridging theory)、胞外聚合物(extracellular poly-mer)、生物除磷(biologicalphosphorusremoval)、生物絮團技術等與活性污泥聯系非常緊密,說明中國在活性污泥研究方面較為領先(Yangetal,2009;Christensenetal,2015)。墨西哥中心性最高,與自養生物群(autotrophic biota)、血液代謝物(blood metab-olite)等關聯度最大。目前關于微藻和細菌的聯合研究仍然較少,但研究潛力巨大,這可能是墨西哥中心性高的原因之一。

2.2生物絮團整體研究熱點現狀分析
2009一2022年,生物絮團研究論文和成果迅速增多,與水產養殖廢水凈化及整體水環境研究的趨勢相同(圖1)。例如,國內外學者對環黃海水產養殖場廢水的研究(Hanetal,2020;Johnetal,2020;Liuetal,2023),以及對水體中抗生素的研究(Golovkoetal,2014;Lietal,2021),表明國內外越發重視水產養殖尾水處理和水環境研究。運用citespace軟件對文獻進行分析,聚類圖譜的
值為0.76,大于0.3,網絡結構顯著;S值為0.89,高于0.7(圖3),說明該聚類結果顯著且可信(Chen,2006)。
關鍵詞出現頻次的結果顯示,水質、凡納濱對蝦、水產養殖、氮和免疫應答等提及的頻次較高。水質仍然是研究中重點關注的指標,其中最主要的是氮的變化。BFT系統中的微生物相互作用可以刺激激活養殖動物免疫系統,提高免疫性能,進而提高存活率(Wangetal,2020)。突變關鍵詞的結果顯示(表2),“高密度養殖\"突變值最高,這與養殖系統和水交換桶(waterexchangetank)的突變相符。這表明,提高養殖動物的生長性能仍然是現在的重點方向。“活性污泥\"的突變值與頻次相對也較高,可能為水質的處理提供新的研究方向。“率\"研究主要集中在氮轉化(Huetal,2014;Luoetal,2013),動物生長性能(Liuetal,2014)等方面。此外“虹(Oncorhynchusmykiss)”、“斑節對蝦(Penaeusmonodon)的突變表明這2個物種與凡納濱對蝦一樣成為在BFT研究中重要的養殖動物(Shyne Anand etal,2014;Glencross etal,2020)。
從聚類圖譜的關鍵詞(圖3)結果來看,排行前10的結果為:(1)異養細菌(heterotrophicbacteria)、(2)基因表達(gene expression)(3)碳源(carbon source)、(4)Nrf2基因、(5)蝦生長性能(shrimpperformance)、(6)蝦類養殖(shrimpaquaculture)、(7)人工基質(arti-ficial substrates)、(8)細菌群落(bacterial community)、(9)生物絮團系統(bioflocsystem)、(10)水質(waterquality)。異養細菌、細菌群落均為微生物對BFT的影響,其中碳源又會對水體中的微生物的群落結構產生影響(Weietal,2020b)。NRF2(nf-e2-relatedfactor2)是一種轉錄因子,通過參與氧化應激反應和藥物解毒基因表達來調節細胞防御毒性和氧化損傷(Heetal,2020)。這往往與蝦生長性能以及蝦類養殖相關聯。人工基質可能為養殖提供新的方式,水質則是養殖過程中相當重要的指標之一。


2.3研究熱點變化趨勢以及未來熱點推測
自生物絮團研究以來,水質、氮和交換(ex-change)等,一直是該領域主要研究內容;C/N比(C/Nratio)和細菌(bacteria)也有較多研究;高密度(highdensity)代表高密度養殖,在生物絮團研究早期出現,該方面的研究數量雖與水質有一定差距,但仍是一股不小的力量,至2023年仍有相關的研究成果(圖4)。2013一2014年,免疫應答與消化酶活性(digestiveenzymeactivity)的研究熱點較高(圖4),說明養殖動物的生長與免疫性能逐漸受到重視。2015一2018年,注:橫坐標為年份,節點列代表關鍵詞最早出現年份,節點顏色對應左下角年份標識,顯示文獻總體發布時間,節點越大,相關文獻越多。碳源與抗病性(diseaseresistance)的研究較為突出,同時還有(水體)零交換(zeroexchange)(圖4),說明水質以及水產動物的抗病能力仍然是BFT的研究熱點。生長性能與免疫性能方面,消化酶活性和體成分(bodycomposition),抗病性和基因表達等在熱點關鍵詞圖譜(圖4)中較為突出。其原因可能是消化酶活性和體成分是用來評估生長性能的重要指標之一,抗病性和基因表達等是評估免疫性能的重要指標之一。這可能與BFT作為一種微生物系統對養殖動物的免疫和生長產生積極影響有關。

Note:Teabsisteareeprtsttyntodppadnddloooste earlogonthelowereftorershowingtheoverallpublicationtimeofthedocument.Telargerteode,themorerelateddounts.
綜上,以凈化水質以及提高養殖動物的生長與免疫性能為目的研究可能仍是未來生物絮團研究的主要方向,主要方式為按照不同的需求調控水體中的微生物群落,調整碳源可能是調控微生物群落最便捷的方式。從水質角度來看,不同的碳源以及不同的C/N與水體中微生物相互作用進行調控,對水中氨的降低有不同程度影響(Dauda,2020)。隨著研究的深入,碳源的研究逐漸成為生物絮團新的研究熱點(Serraetal,2015;Ahmadetal,2016;Mansouretal,2017)。碳源的種類和形態可能影響水體細菌群落,進而影響生物絮團形成和生物生長性能(Huetal,2017)。從養殖動物的生長和免疫性能來看,水體中的微生物群落會對養殖動物的免疫產生積極影響,提高抗病能力(Wangetal,2022a)。同時絮團能夠提高養殖動物的飼料利用率和生長性能(Xuetal,2012),因此其形成速度和大小的調控可能是未來研究方向之一。
3討論
3.1BFT凈化水質相關研究
3.1.1碳源的添加對BFT水質的影響添加額外碳源是一種優化微生物群落以及提高養殖動物的生長性能、與免疫能力的優秀調控手段(Abirietal,2022;Guoetal,2022)。碳源近年受關注度高,研究價值與潛力大,常用的有機碳源多為葡萄糖、淀粉、糖蜜等糖類,這些碳源已被證明可顯著降低BFT水體氮含量(Suitaetal,2015;Rochaetal,2022)。Khanjani等(2017)發現,糖蜜和淀粉在改善水質方面比小麥粉更有效。簡單結構的糖類可迅速為微生物相互作用供能,而結構復雜的糖類如淀粉和蜜糖,則需先轉化為易吸收分解的單糖,其降解氮的速率相對較慢。不過有研究表明,多糖和單糖都能有效形成生物絮團(Vilanietal,2016)。
傳統或常規碳源對水質和培養生物生長性能的影響已得到證明(Ferreiraetal,2020),新型碳源(生物可降解聚合物,biodegradablepolymers,BDPs)也被證明能有效降低水體中氮的含量,且具有傳統碳源所沒有的優勢。根據Li等(2018)的研究,BDPs與龍眼粉復合構建的固態碳源,對硝酸鹽和亞硝酸鹽氮的去除率更高,且添加緩釋碳源可避免人力物力浪費。與Luo等(2017)提出的BDPs工程化應用策略相似,該研究在生產開始時僅將BDPs裝入尼龍袋并懸掛在魚缸內,整個制作過程中無添加額外物質,這對產業化的研究具有重要意義。固體外部碳質基質必須首先降解為溶解性有機碳(DOC),與可溶性底物相比,不溶性碳降解為DOC的速度較慢,對氨氮的去除也相對較慢(Abakarietal,2021),因此可以根據需求調控水質凈化速率,減少投入碳源的頻次。
3.1.2不同微生物對BFT水質的影響BFT中不同類別的微生物之間存在復雜的相互作用,這些復雜的相互作用一起作用于整個系統。Zhu等(2022)發現在對蝦養殖時,有穩定的菌群作為優勢細菌(屬水平),無需排水即可保持較低的氮水平,維持相對穩定的生態系統。芽孢桿菌作為一種應用廣泛的益生菌,在許多行業中均有廣泛應用,Luo等(2016)發現在BFT中添加 3.75×108 個 /mL 的枯草芽孢桿菌可以有效去除土臭素(Geosmin)和2-甲基異冰片(2-methylisoborneol)2種對水產養殖動物產生不利影響的異味化合物,同時有效降低水體中氮的含量。合理推測,芽孢桿菌屬對水中氮的去除有十分積極的意義(Jamesetal,2021)。有研究發現,好氧活性污泥中的細菌可以分泌大量的多糖進入胞外環境,利用胞外多糖的粘度和流變性,捕獲微藻進而形成微藻-細菌生物群落(Seviour etal,20o9;Seviour et al,2012;Wangetal,2022b),有效提高吸附水體氮磷的能力。微藻與異養細菌一樣具有顯著去除水體中氨氮和亞硝態氮的功能(Nieetal,2020),能有效降低水體中磷酸鹽的含量(Holandaetal,2022),還能代謝多糖作為粘合劑來幫助絮凝(Watanabeetal,2008)。微藻分泌產生的多糖能促進胞外聚合物質(extracellu-larpolymericsubstances,EPS)產生。EPS是由蛋白質、多糖、類腐殖質和核酸等大分子組成的混合物(Wingenderetal,1999),已經被證明能顯著影響絮凝物的絮凝性、沉降性和脫水性以及生物膜的污泥保留和抗剪切性(Dingetal,2015)。目前對藻類在BFT中的研究應用仍然較少,但它為BFT水質處理提供了理論基礎,并為調控絮凝和沉降性能開辟了新的方向。
3.2BFT提高養殖動物生長免疫性能的相關研究
3.2.1碳源的添加對生長免疫性能的影響不同碳源對BFT性能影響顯著,傳統糖類可提高飼料利用率(Liu etal,2014;Rohmana etal,2015;Gao etal,2017),緩釋碳源可提高水體中硝態氮去除效率,有效提高魚類的生長性能并改善健康狀況(Lietal,2018)。碳源的使用可能會影響生物絮凝物的化學成分,進而影響絮團系(Weietal,2016;Kumaretal,2017;Lum-sangkuletal,2021)。生物絮團是水產養殖動物的一種極好營養來源,這可能是養殖動物生長性能提高的原因之一(Khanjanietal,2023)。BFT對于幼蝦的生長有顯著的促進作用,并且能優化水體中的菌群結構(Emerencianoetal,2011;2012)。Yu等(2020)通過檢測基因表達的方式發現大約 12% 微生物絮凝物添加量是最合適補充水平。Rajkumar等(2016)發現小麥粉與甘蔗糖蜜、木薯粉相比有效地提高了生物絮凝物的產量及營養價值,同時增加了異養細菌的數量。
微生物群落對養殖動物的生長發育至關重要(Zhangetal,2016),而碳源對水體中的微生物群落有重要影響,其種類可能會影響水體中細菌的數量、相對豐度和多樣性等(Luna-Gonzalezetal,2017;Var-gas-Alboresetal,2019;Zhuetal,2021)。不同碳源能不同程度改善水體中細菌群落,提高養殖動物的免疫性能。甘油作為生物柴油的副產品,被證明能凈化水質的同時,還能增強養殖動物對某些致病菌的抵抗能力;龍眼種子粉(longanseedpowder)能顯著提高羅非魚的生長性能以及免疫性能。
添加不同碳源會使生物絮團中細菌的種屬呈現不同的比例(Weietal,2020a)。研究證明不同碳源對生物絮團系統中細菌多樣性有影響,部分碳源可能對特定細菌群落產生的影響更大。甘蔗渣為碳源時,異養細菌和弧菌的總數量均高于對照組(Sharawy等,2022);聚 β -羥基丁酸酯-β羥基戊酸酯(Poly β -hydroxybutyrate- ?β -hydroxyvalerate,PHBV)作為碳源可以顯著提高羅非魚腸道菌群中鯨桿菌屬(Cetobacterium)的豐度(Liuetal,2019);低聚糖也能對水體與腸道菌群結構產生積極的影響,大豆低聚糖可以有效的降低水體中有害菌的豐度(仇宗勝等,2024);此外,添加 1%~5% 大豆低聚糖替代葡萄糖作為額外添加碳源對鯽魚腸道菌群有顯著優化作用(Qiuetal,2023)。已經有研究發現生物絮團中存在的細菌群落有可能顯著影響水產養殖動物腸道菌群的豐度和活性(Cardonaetal,2016;Lietal,2018),但這方面的研究仍然較少,還需要進一步研究。
3.2.2微生物對養殖動物生長及免疫性能的影響有益菌已經被證明可以提高養殖動物的免疫性能。Ranjit等(2013)觀察到,在飼料中添加地衣芽孢桿菌可以促進養殖動物的生長和提高免疫能力,一段時間喂養后,腸道中的有益菌顯著增加,致病菌種減少。水體中的細菌群落同樣可以有效提高養殖動物的免疫能力。Laice等(2021)的研究證明在BFT中加入共生菌群可改善尼羅羅非幼魚的生長性能,在不會引起腸道形態或腸道細胞密度的顯著變化的情況下提高血液相關參數。添加人工基質對BFT有利,它的加入能提高系統中的整體生物量。Asaduz-zaman等(2010)發現添加人工基質提高了組合生物的生物量(浮游生物 + 附生生物)。在BFT系統中添加人造底物有助于優化食物的可用性(Ferreiraetal,2016)。而Schveitzer等(2013a)發現在高密度的養殖下,添加底物可以提高重量與存活率。
3.3蝦類作為BFT中養殖動物的優勢
3.3.1蝦類高效的蛋白質吸收效率在BFT相關研究中,較多研究采用了凡納濱對蝦作為養殖對象,可能由于蝦類具有高效的蛋白質利用能力(Cliffordetal,1978),使它們能夠從微生物和生物絮凝顆粒中獲得足夠的蛋白質來支持生長和代謝需求。BFT系統中的微生物可以有效促進蝦類生長,Brito等(2016)發現硅藻和輪蟲可以作為生物絮團系統中凡納濱對蝦蝦苗的天然食物來源,并能夠促進幼蝦的生長。這與Simon等(2019)的發現類似,利用微生物的生物量(NOVACQTM)替代魚粉,發現微生物生物量主要通過刺激攝食來促進養殖動物的生長,對營養物質的利用沒有不利影響,可為水產行業后續的研究提供參考。綜上所述,在BFT系統中使蝦類尤其是凡納濱對蝦的養殖有相對更高效的產出
3.3.2蝦類優良的水生態適應性高密度養殖環境下,水體中容易滋生病菌,導致動物免疫力下降。蝦類的生態幅廣,能適應不同的水體類型和環境條件,在高密度環境下與魚類相比可以有更好的生長與免疫能力(DiPriscoetal,2012)。BFT能有效提高蝦類的生長性能以及免疫性能。有學者認為生物絮團的存在對高密度養殖凡納濱對蝦幼蝦的生長和免疫相關基因表達產生積極影響(Kimetal,2014)。有研究表明在高密度養殖的條件下,中等水平的生物絮團(總固態懸浮顆粒物(total suspended solids,TSS)的濃度為 400~600mg/L) 更適合凡納濱對蝦的養殖培育(Schveitzeretal,2013b)。此外,Yun等(2022)發現在養殖系統中的浮游動物、其他群體的影響較弱的條件下,藻類群體相對于細菌群體茁壯成長,養蝦場中的浮游動物和相關生物對藻類的影響大于對細菌的影響。因此,藻類主導的生物絮團系統更適合蝦類生長繁殖(Ramananetal,2016)。
4結論
本文借助Citespace分析圖譜和文獻閱讀,發現近十多年來生物絮團的主要研究目標集中于水質凈化以及養殖動物的生長和免疫性能。調控方式主要是通過額外添加不同的碳源、有益菌等來優化水體中的微生物群落。由于碳源對生物絮團系統中的微生物群落、培養生物、水質和營養品質具有重要意義,可能仍然是未來生物絮團研究發展的重要方向。
此外,在全球養殖廢水污染日益嚴重的當下(梁惜梅等,2013),水體中的微生物向益生菌方向偏移的思路,是需要關注的研究方向。緩釋碳源可以改善頻繁添加碳源所帶來的各種問題,低聚糖與傳統有機碳源相比,在調節水體菌群結構方面表現出更為顯著的積極效果,新型碳源的研究對于生物絮團的整體發展具有重要意義。目前,新型碳源的研究還相對較少,需要進一步深入。
蝦類,尤其是凡納濱對蝦,因其高效的蛋白質吸收率和良好的水生態適應性,成為目前BFT研究最多的養殖動物之一。將更多的蝦種和魚類應用于BFT養殖,可能也是未來研究的重要環節。此外,水體和生物絮團中存在的細菌群落對水產養殖動物腸道菌群的影響也值得關注(Sugitaetal,1996;Coyteetal,2015),但目前BFT在這方面的相關研究還比較少,值得進一步關注。
參考文獻
梁惜梅,施震,黃小平,2013.珠江口典型水產養殖區抗生素 的污染特征[J].生態環境學報,22(2):304-310.
LIANGXM,SHIZ,HUANGXP,2013.Occurrenceofantibiotics in typical aquaculture of the Pearl River Estuary[J]. Ecologyand Environmental Sciences,22(2):304-310.
羅國芝,李文清,陳佳捷,等,2013.生物絮凝技術在我國水產 養殖中的應用研究現狀和發展趨勢分析[J].中國水產, (11):64-67.
仇宗勝,錢仁東,羅巧華,等,2024.不同低聚糖對生物絮團形 成及其菌群結構的影響[J].水產學報,48(10):139-148.
QIUZS,QIANRD,LUOQH,etal,2024.Effects of differentoligosaccharidesontheformationofbioflocsand the structureof thebacterialcommunity[J].JournalofFisheries of China, 48(10):139-148.
ABAKARI G, LUO G Z, KOMBAT E O, et al, 2021. Supplemental carbon sources applied in biofloc technology aquaculture systems: types, effects and future research[J]. Reviews in Aquaculture,13(3):1193-1222.
ABIRI S A, CHITSAZ H, NAJDEGERAMI E H, et al, 2022. Influence of wheat and rice bran fermentation on water quality, growth performance,and health status of Common carp (Cyprinus carpio L.) juveniles in a bioflocbased system[J]. Aquaculture, 555:738168.
AHMAD H I, VERMA A K, BABITHA RANI A M, et al, 2016. Growth,non-specific immunity and disease resistance of Labeo rohita against Aeromonas hydrophila in biofloc systems using different carbon sources[J]. Aquaculture, 457:61-67.
ASADUZZAMAN M, RAHMAN M M, AZIM M E, et al, 2010.Efects of C/N ratio and substrate addition on natural food communities in freshwater prawn monoculture ponds[J]. Aquaculture, 306(1/2/3/4):127-136.
AVNIMELECH Y, 1999. Carbon/nitrogen ratio as a control element in aquaculture systems[J]. Aquaculture, 176(3/4): 227-235.
AVNIMELECH Y,2006.Bio-filters: the need for an new comprehensive approach[J]. Aquacultural Engineering, 34(3): 172-178.
BOSSIER P, EKASARI J, 2017. Biofloc technology application in aquaculture to support sustainable development goals[J]. Microbial Biotechnology, 10(5):1012-1016.
BOYD C E,2003. Guidelines for aquaculture effluent management at the farm-level[J]. Aquaculture, 226(1/2/3/4): 101- 112.
CARDONA E, GUEGUEN Y, MAGRE K, et al, 2016. Bacterial community characterization of water and intestine of the shrimp Litopenaeus stylirostris in a biofloc system[J]. BMC Microbiology,16(1): 157.
CHEN C M, 2006. CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of the American Society for Information Science and Technology, 57(3):359-377.
CHEN C M, HU Z G,LIU SB, et al, 2012.Emerging trends in regenerative medicine:a scientometric analysisinCiteSpace[J]. Expert Opinion on Biological Therapy, 12 (5):593-608.
CHEN C M, IBEKWE-SANJUAN F, HOU J H,2010. The structure and dynamics of cocitation clusters: a multipleperspective cocitation analysis[J]. Journal of the American Society for Information Science and Technology, 61(7): 1386-1409.
CHRISTENSEN M L KEIDING K. NIFLSEN P H et al. 2015.Dewatering in biological wastewater treatment:a review[J]. Water Research,82: 14-24.
CLIFFORD H C III, BRICK R W, 1978. Protein utilization in the freshwater shrimp Macrobrachium rosenbergii[J].Proceedings of the Annual Meeting-World Mariculture Society, 9(1/2/3/4): 195-208.
COYTE K Z,SCHLUTER J,FOSTER KR,2015. The ecology of the microbiome: networks, competition,and stability [J]. Science,350(6261): 663-666.
CRAB R,LAMBERT A, DEFOIRDT T, et al, 2010. The application of bioflocs technology to protect brine shrimp (Artemia franciscana) from pathogenic Vibrio harveyi[J]. Journal of Applied Microbiology, 109(5):1643-1649.
DAUDA AB,2020. Biofloc technology: a review on the microbial interactions, operational parameters and implications to disease and health management of cultured aquatic animals[J]. Reviews in Aquaculture, 12(2):1193-1210.
DING Z J, BOURVEN I, GUIBAUD G, et al, 2015.Role of extracellular polymeric substances (EPS) production in bioaggregation: application to wastewater treatment[J]. Applied Microbiology and Biotechnology, 99(23): 9883- 9905.
DI PRISCO G, VERDE C, 2012. Adaptation and Evolution in Marine Environments,Volume 1: The Impacts of Global Change on Biodiversity[M]. Berlin, Heidelberg: Springer Berlin Heidelberg.
ELLEGAARD O, WALLIN JA,2015. The bibliometric analysis of scholarly production: how great is the impact?[J]. Scientometrics,105(3):1809-1831.
EMERENCIANO M, BALLESTER E L C, CAVALLI R O, et al,2011.Effect of biofloc technology (BFT) on the early postlarval stage of pink shrimp Farfantepenaeus paulensis: growth performance, floc composition and salinity stress tolerance[J]. Aquaculture International,19(5):891-901.
EMERENCIANO M, BALLESTER E L C,CAVALLI R O, et al,2012.Biofloc technology application as a food source in a limited water exchange nursery system for pink shrimp Farfantepenaeus brasiliensis (Latreille, 1817)[J]. Aquaculture Research, 43(3):447-457.
FERREIRA L M H, LARA G, WASIELESKY JR W, et al, 2016.Biofilm versus biofloc:are artificial substrates for biofilm production necessary in the BFT system?[J]. Aquaculture International, 24(4):921-930.
FERREIRA G S, SILVA V F,MARTINS M A, et al, 2020. Strategies for ammonium and nitrite control in Litopenaeus vannamei nursery systems with bioflocs[J].Aquacultural Engineering,88:102040.
GAO M R, WANG J, MA G N, et al, 2017. Carbon supplementation and microbial management to stimulate Artemia biomass production in hypersaline culture conditions[J]. Aquaculture Research, 48(3):1240-1250.
GLENCROSS B D, HUYBEN D, SCHRAMA JW, 2020. The application of single-cell ingredients in aquaculture feeds: a review[J]. Fishes, 5(3):22.
GOLOVKO O, KUMAR V, FEDOROVA G, et al, 2014. Seasonal changes in antibiotics,antidepressants/psychiatric drugs,antihistamines and lipid regulators in a wastewater treatment plant[J]. Chemosphere,111:418-426.
GUO H P, DONG P S, GAO F, et al, 2022. Sucrose addition directionally enhances bacterial community convergence and network stability of the shrimp culture system[J]. NPJ Biofilms and Microbiomes, 8: 22.
HAN Q F, ZHAO S, ZHANG X R, et al, 2020. Distribution, combined pollution and risk assessment of antibiotics in typical marine aquaculture farms surrounding the Yellow Sea,North China[J].Environment Intermational,138: 105551.
HARGREAVES JA, 2006. Photosynthetic suspended-growth systems in aquaculture[J]. Aquacultural Engineering, 34 (3):344-363.
HE F,RU XL,WEN T,2020. NRF2, a transcription factor for stress response and beyond[J]. International Journal of Molecular Sciences, 21(13):4777.
HOLANDA M, BESOLD C, SEMPERE F L, et al, 2022. Treatment of effluents from marine shrimp culture with biofloc technology:production of Arthrospira (Spirulina) platensis (cyanobacteria) and nutrient removal[J]. Journal of the World Aquaculture Society, 53(3):669-680.
HOU J H, YANG X C, CHEN C M, 2018. Emerging trends and new developments in information science: a document co-citation analysis (2009—2016)[J]. Scientometrics,115(2):869-892.
HU X J, CAO Y C, WEN G L,et al, 2017. Effect of combined use of Bacillusand molasses on microbial communities in shrimp cultural enclosure systems[J]. Aquaculture Research, 48(6):2691-2705.
HU Z, LEE J W, CHANDRAN K, et al, 2014. Influence of carbohydrate addition on nitrogen transformations and greenhouse gas emissions of intensive aquaculture system[J]. Science of the Total Environment, 470:193-200.
JAMES G,DAS BC, JOSE S, et al,2021.Bacillus as an aquaculture friendly microbe[J]. Aquaculture International, 29 (1):323-353.
JOHN E M, KRISHNAPRIYA K, SANKAR T V, 2020. Treatment of ammonia and nitrite in aquaculture wastewater by an assembled bacterial consortium[J]. Aquaculture, 526:
KHANJANI M H, MOZANZADEH M T, SHARIFINIA M, et al, 2023. Biofloc: a sustainable dietary supplement, nutritional value and functional properties[J]. Aquaculture, 562:738757.
KHANJANI M H, SAJJADI M M, ALIZADEH M, et al, 2017. Nursery performance of Pacific white shrimp (Litopenaeus vannamei Boone,1931) cultivated in a biofloc system: the effect of adding different carbon sources[J]. Aquaculture Research, 48(4):1491-1501.
KIM S K, PANG Z G, SEO H C, et al, 2014. Effect of bioflocs on growth and immune activity of Pacific white shrimp, Litopenaeus vannamei postlarvae[J]. Aquaculture Research, 45(2):362-371.
KUMAR S,ANAND P S S,DE D, et al, 2017. Effects of biofloc under different carbon sources and protein levels on water quality, growth performance and immune responses in black tiger shrimp Penaeus monodon(Fabricius,1978) [J]. Aquaculture Research, 48(3):1168-1182.
LAICE L M, CORREA FILHO R A C, VENTURA A S, et al, 2021. Use of symbiotics in biofloc (BFT)-based Nile tilapia culture: production performance, intestinal morphometry and hematological parameters[J]. Aquaculture, 530: 735715.
LI FP, HUANGJ, WANG M Z, et al, 2021. Sources, distribution and dynamics of antibiotics in Litopenaeus vannamei farming environment[J]. Aquaculture, 545:737200.
LI J W,LIU G,LI C W, et al,2018.Effects of different solid carbon sources on water quality, biofloc quality and gut microbiota of Nile tilapia (Oreochromis niloticus) larvae [J]. Aquaculture, 495:919-931.
LIU G, DENG Y L, VERDEGEM M, et al, 2019. Using poly(β- hydroxybutyrate- β -hydroxyvalerate) as carbon source in biofloc-systems: nitrogen dynamics and shift of Oreochromis niloticus gut microbiota[J]. Science of the Total Environment, 694:133664.
LIU L P, HU Z X,DAI X L, et al, 2014. Effects of addition of maize starch on the yield, water quality and formation of bioflocs in an integrated shrimp culture system[J]. Aquaculture, 418:79-86.
LIU M, LIAN Q P, ZHAO Y, et al, 2023. Treatment effects of pond aquaculture wastewater using a Field-scale Combined Ecological Treatment System and the associated microbial characteristics[J].Aquaculture, 563:739018.
LUMSANGKUL C, TAPINGKAE W, SRINGARM K, et al, 2021.Effect of dietary sugarcane bagasse supplementation on growth performance, immune response, and immune and antioxidant-related gene expressions of Nile tilapia Animals,11(7):2035.
LUNA-GONZALEZ A, AVILALEAL J, FIERRO CORONADO J, et al, 2017.Effects of bacilli, molasses,and reducing feeding rate on biofloc formation,growth,and gene expression in Litopenaeus vannamei cultured with zero water exchange[J]. Latin American Journal of Aquatic Research, 45(5):900-907.
LUO G Z, WANG J, MA N N, et al, 2016. Effects of inoculated Bacillus subtilis on geosmin and 2-methylisoborneol removal in suspended growth reactors using aquacultural waste for biofloc production[J]. Journal of Microbiology and Biotechnology,26(8):1420-1427.
LUO G Z, ZHANG N, CAI S L, et al, 2017. Nitrogen dynmics, bacterial community composition and biofloc quality in biofloc-based systems cultured Oreochromis niloticus with poly- ?β -hydroxybutyric and polycaprolactone as external carbohydrates[J]. Aquaculture, 479:732-741.
LUO G Z, AVNIMELECH Y, PAN YF, et al, 2013. Inorganic nitrogen dynamics in sequencing batch reactors using biofloc technology to treat aquaculture sludge[J]. Aquacultural Engineering, 52:73-79.
MANSOUR A T, ESTEBAN M A, 2017. Effects of carbon sources and plant protein levels in a biofloc system on growth performance,and the immune and antioxidant status of Nile tilapia (Oreochromis niloticus)[J]. Fish amp; Shellfish Immunology, 64: 202-209.
MARTINSMA,POLI MA, LEGARDA E C, et al, 2020. Heterotrophic and mature biofloc systems in the integrated culture of Pacific white shrimp and Nile tilapia[J]. Aquaculture, 514:734517.
NIE X F, MUBASHAR M, ZHANG S, et al, 2020. Current progress, challenges and perspectives in microalgae-based nutrient removal for aquaculture waste: a comprehensive review[J]. Journal of Cleaner Production, 277:124209.
OUYANG W, WANG Y D,LIN C Y, et al, 2018. Heavy metal loss from agricultural watershed to aquatic system: a scientometrics review[J]. Science of the Total Environment, 637:208-220.
QIU Z S, ZHAO J H, LUO Q H, et al, 2023.Effects of soybean oligosaccharides instead of glucose on growth, digestion, antioxidant capacity and intestinal flora of crucian carp cultured in biofloc system[J]. Aquaculture Reports,29: 101512.
RAJKUMAR M, PANDEY PK,ARAVIND R, et al, 2016. Effect of different biofloc system on water quality, biofloc composition and growth performance in Litopenaeus vannamei(Boone, 1931) [J]. Aquaculture Research, 47(11): 3432-3444.
RAMANAN R, KIM B H, CHO D H, et al, 2016. Algae - bacteria interactions: evolution, ecology and emerging applications[J]. Biotechnology Advances, 34(1):14-29.
RANJIT K N, RAMANR P, JADHAO S B, et al, 2013.Effect of dietary supplementation of Bacillus licheniformis on gut microbiota, growth and immune response in giant freshwater prawn, Macrobrachium rosenbergii (de Man, 1879)[J]. Aquaculture International, 21(2):387-403.
ROCHA A F, BARBOSA V M, WASIELESKY W Jr, et al, 2022.Water quality and juvenile development of mulletMugil lizain a biofloc system with an additional carbon source: dextrose, liquid molasses or rice bran?[J].Aquaculture Research, 53(3):870-883.
ROHMANA D, SURAWIDJAJA E H, SUKENDA S, et al, 2015. Water quality and production performance of catfish prawn co-culture with organic carbon source addition[J]. Aquaculture International, 23(1):267-276.
SCHVEITZER R, ARANTES R, BALOI M F, et al, 2013a.. Use of artificial substrates in the culture of Litopenaeus vannamei (Biofloc System) at different stocking densities: effects on microbial activity, water quality and production rates[J]. Aquacultural Engineering, 54:93-103.
SCHVEITZER R,ARANTES R, COSTODIO P F S, et al, 2013b Effect of different biofloc levels on microbial activity, water quality and performance of Litopenaeus vannamei in a tank system operated with no water exchange[J]. Aquacultural Engineering, 56:59-70.
SERRA F P, GAONA C A P, FURTADO P S, et al, 2015. Use of different carbon sources for the biofloc system adopted during the nursery and grow-out culture of Litopenaeus vannamei[J]. Aquaculture International, 23(6):1325-1339.
SEVIOUR T,PIJUAN M T, NICHOLSON T, et al, 2009. Gelforming exopolysaccharides explain basic differences between structures of aerobic sludge granules and floccular sludges[J]. Water Research, 43(18):4469-4478.
SEVIOUR T, YUAN Z G, VAN LOOSDRECHT M C M, et al, 2012. Aerobic sludge granulation: a tale of two polysaccharides?[J]. Water Research, 46(15):4803-4813.
SHARAWY Z Z, ABBAS E M, ABDELKHALEK N K, et al, 2022.Effect of organic carbon source and stocking densities on growth indices,water microflora, and immune-related genes expression of Litopenaeus vannamei Larvae in intensive culture[J]. Aquaculture, 546:737397.
SHYNE-ANAND P S,KOHLI MP S, KUMAR S, et al, 2014. Effect of dietary supplementation of biofloc on growth performance and digestive enzyme activities in Penaeus monodon[J]. Aquaculture,418:108-115.
SIMON C J, BLYTH D, AHMAD FATAN N, et al, 2019. Microbial biomass (Novacq TM) stimulates feeding and improves the growth performance on extruded low to zerofishmeal diets in Tilapia (GIFT strain)[J]. Aquaculture, 501:319-324.
SUGITA H, SHIBUYA K, SHIMOOKA H, et al, 1996. Antibacterial abilities of intestinal bacteria in freshwater cultured fish[J]. Aquaculture,145(1/2/3/4):195-203.
SUITA S M,BALLESTER EL C,ABREU PC ,et al,2015. Dextrose as carbon source in the culture of Litopenaeus vannamei (Boone,1931) in a zero exchange system[J]. Latin American Journal of Aquatic Research, 43(3): 526- 533.
VARGAS-ALBORESF, MARTINEZ-CORDOVA L R, GOLLAS-GALVAN T, et al, 2019. Inferring the functional properties of bacterial communities in shrimp-culture bioflocs produced with amaranth and wheat seeds as fouler promoters[J]. Aquaculture, 500:107-117.
VILANI F G, SCHVEITZER R, ARANTES R DA F, et al, 2016. Strategies for water preparation in a biofloc system: Effects of carbon source and fertilization dose on water quality and shrimp performance[J]. Aquacultural Engineering,74:70-75.
WANG C, CHUPROM J, WANG Y, et al, 2020. Beneficial bacteria for aquaculture: nutrition, bacteriostasis and immunoregulation[J]. Journal of AppliedMicrobiology,128(1): 28-40.
WANG H, WU P, ZHENG D, et al, 2022b.N-Acyl-HomoserineLactone (AHL)-Mediated Microalgal-Bacterial Communication Driving Chlorella-Activated Sludge Bacterial Biofloc Formation[J]. Environmental Science amp; Technology, 56(17): 12645-12655.
WANG Z Y, MAO Z F, LI X Y, et al, 2022a. Growth performance,nutritional quality, and immune-related gene expression of the Chinese miten crab (Eriocheir sinensis) in pond ecosystem as influenced by stocking density[J]. Fishes, 7(6):362.
WATANABE K, IMASE M, AOYAGI H, et al, 2008. Development of a novel artificial medium based on utilization of algal photosynthetic metabolites by symbiotic heterotrophs [J]. Journal of Applied Microbiology,105(3):741-751.
WEI G S, SHAN D P,LIG Z, et al, 2020a. Prokaryotic communities vary with floc size in a biofloc-technology based aquaculture system[J]. Aquaculture, 529:735632.
WEI YF,WANG A L,LIAO S A, 2020b. Effect of different carbon sources on microbial community structure and composition of ex-situ biofloc formation[J]. Aquaculture, 515:734492.
WEIYF,LIAOSA,WANGAL,2016.The effect of different carbon sources on the nutritional composition,microbial community and structure of bioflocs[J]. Aquaculture, 465: 88-93.
WINGENDERJ,NEUTR,FLEMMINGHC,1999.Whatare bacterial extracellular polymeric substances?[M]. Springer.
XU W J,PANL Q,2012. Effects of bioflocs on growth performance, digestive enzyme activity and body composition of juvenile Litopenaeusvannamei in zero-water exchange tanksmanipulatingC/N ratio in feed[J].Aquaculture,356: 147-152.
YANG SF, LI X Y,20o9. Influences of extracellular polymeric substances(EPS) on the characteristics ofactivated sludge under non-steady-state conditions[J]. Process Biochemistry, 44(1):91-96.
YUZ,DAIZY,QINGX,etal,2020.Alleviative effectsof dietarymicrobial floconcopper-induced inflammation, oxidative stress,intestinal apoptosis and barrier dysfunction inRhynchocypris lagowskiDybowski[J].Fishamp; Shellfish
Immunology, 106:120-132.
YUNHS,KIMDH,KIMJG, et al,2022.The microbial communities (bacteria,algae,zooplankton,and fungi) improved biofloc technology including the nitrogen-related material cycle in Litopenaeusvannamei farms[J].Frontiers in Bioengineering and Biotechnology,10: 883522.
ZHANG N,LUO GZ,TANHX, et al, 2016. Growth, digestive enzyme activity and welfareof Tilapia(Oreochromisniloticus) reared in a biofloc-based system with poly ?β -hydroxybutyric as a carbon source[J].Aquaculture, 464:710-717.
ZHUL,CHE X,LIU XG, et al,2022.Reducing carbon input improved the diversity of bacterial community in large-scale biofloc shrimp culture facilities[J].Diversity,14(10):778.
ZHU Y Y, WANG S P, HUANG L, et al, 2021. Effects of sucrose addition on water quality and bacterioplankton community in the Pacific White Shrimp (Litopenaeusvannamei) culture system[J]. Aquaculture Research, 52(9): 4184-4197.
(責任編輯 鄭金秀 崔莎莎)
Bibliometric Analysis of Research Hotspots in Biofloc Technology for Aquaculture
ZHOU Hangxian1,2.3, ZHAO Jianhua1, 2,3, XU Qiyou1,2,3
(1. College of Life Science, Huzhou Normal University, Huzhou , P.R. China; 2. National and Local Joint Engineering Laboratory of Aquatic Animal Breeding and Nutrition, Huzhou , P.R. China; 3. Zhejiang Provincial Key Laboratory for Conservation and Development ofAquatic Biological Resources,Huzhou 3130oo, P.R. China)
Abstract: In this study, we used bibliometrics to analyze the biofloc literature in core journals of the Web of Science database from 2009 to 2022. We explored research hotspots and summarized research topics,aiming to provide guidance for research on bioflocs. Research articles on bioflocs have rapidly increased over the past 1O years,and they mainly focused on the response of the microbial community to the addition of organic carbon sources,probiotics and other materials,evaluation of the efects of the microbial community on water quality and the growth and the immune response of cultured animals in biofloc technology (BFT) aquaculture systems. Keyword cluster analysis was used to identify the top 10 keywords in the biofloc literature: (1) heterotrophic bacteria, (2) gene expresson, (3) carbon source, (4) Nrf2 gene,(5) shrimp performance, (6) shrimp aquaculture,(7) artificial substrates,(8) bacterial community, (9) biofloc system,and (10) water quality. High frequency keywords included water quality, Litopenaeus vannamei (whiteleg shrimp), aquaculture, nitrogen and immune response. Water quality remained a key focus in research, with nitrogen fluctuations being of particular concern. Burst keyword analysis shows that high-density aquaculture had the highest burst value,indicating that enhancing the growth performance of culture animals continued to be a primary research objective.Activated sludge displayed a relatively high burst value and frequency, suggesting new research directions for water quality treatment. Additionally, microorganisms had a positive impact on the purification of water quality and the growth and immune response of cultured animals. This study highlights that shrimp, especially Litopenaeus vannamei,have become one of the most promising culture animals in the field of BFT due to highly efficient protein absorption and excellent adaptability.
Key words: bibliometrics; biofloc; microbial community; organic carbon source