Abstract:Thepeak frequency ofelectroencephalography(EEG)isamethod for inferring thalamocortical functional integrity basedon EEG dynamics.The ABCDmodel derived from this frequencycanindirectlyreflect patient'sconsciousness state,aiding in clinical asssment and prognosis prediction.Thisreview discusses the theoretical basis,application progress,and future challengesand directionsof EEGpeak frequency inthediagnosis and treatment of patientswith disorders of consciousness(DoC).TheEEG peak frequency refers the strongest frequencypoint withina specific frequency band intheEEG signal,which reflects thecharacteristicsofcortical neural activity.Based on thespectral peaks inthe EEG power spectrum,itisclassified in ABCD four distinct models according the presence or absence of spontaneous neural oscilations,enabling more accurate clinical staging of patients with prolonged disorder of consciousness(pDoC)and aiding in prognosis evaluation and treatment guidance.Despitechallngessuch as limitedunderstanding of theunderlying mechanisms and the lack of definitive clinical evidence,EEG peak frequency has demonstrated significant potential inthe diagnosis and treatmenf pDo.
Key words:peak frequency of electroencephalography;prolonged disorder of consciousness;assessment; invasiveneuromodulation
腦電峰頻率是腦電圖信號中特定頻段內(nèi)最強(qiáng)的頻率點(diǎn),反映了大腦皮層神經(jīng)活動的自發(fā)性、節(jié)律性特點(diǎn)[1]。其通過研究腦電圖中 α,β,Θ 及0等特定頻段的活動峰值,在此基礎(chǔ)上進(jìn)行分型,以此來判斷大腦所處的興奮或抑制性神經(jīng)生理狀態(tài)。通過對不同頻段腦電波的分析,尤其是峰頻率的變化,能夠?yàn)榕R床提供有關(guān)患者意識水平、神經(jīng)功能及康復(fù)潛力的重要信息。腦電峰頻率目前已廣泛應(yīng)用于意識障礙、認(rèn)知障礙、精神障礙等疾病[2-5]的評估與預(yù)后判斷,逐步獲得了國內(nèi)外學(xué)者的認(rèn)可。不同的腦電峰頻率分型代表著不同的神經(jīng)生理狀態(tài),在臨床上,尤其是在慢性意識障礙(prolongeddisorderofconsciousness,pDoC)患者中,腦電頻率的變化能夠反映大腦的功能狀態(tài)、意識水平及恢復(fù)潛力[6]。
pDoC是一種嚴(yán)重并持久的神經(jīng)病理狀態(tài),患者由于廣泛的大腦損傷而喪失自主意識,無法與外界進(jìn)行交流或響應(yīng)外界刺激[7-8]。常見的慢性意識障礙狀態(tài)包括昏迷、植物狀態(tài)(vegetativestate,VS)與微小意識狀態(tài)(minimallyconsciousstate,MCS)等[9-10]。對于此類患者,臨床上通常依賴臨床神經(jīng)評估[1],如格拉斯哥昏迷指數(shù)(Glasgow coma scale,GCS)、修訂的昏迷恢復(fù)量表(comarecoveryscale-revised,CRS-R)等和影像學(xué)檢查[12](如功能性磁共振成像等)進(jìn)行診斷,但這些手段往往局限于粗略評估[13],且無法提供關(guān)于患者意識恢復(fù)潛力的精確預(yù)判,容易導(dǎo)致誤判并影響患者的診療,對患者家庭及社會造成了極大的負(fù)擔(dān)。因此,目前迫切地需要一種無創(chuàng)性的、精準(zhǔn)的檢測方法,為pDoC患者提供有效的預(yù)后判斷及后續(xù)治療方案。
腦電峰瀕率基于腦電圖之上,不僅具有高時間分辨率和非侵入性的優(yōu)點(diǎn)[14],同時其將腦電圖中不同頻段的活動進(jìn)行分離提取[15],在此基礎(chǔ)上對pDoC患者的腦電活動進(jìn)行分類判斷,根據(jù)其腦電頻段活動程度的判斷其意識水平,從而對pDoC進(jìn)行診斷評估。近年來,腦電峰頻率的變化被認(rèn)為能夠在一定程度上反映意識恢復(fù)的潛力及臨床狀態(tài)的動態(tài)變化[16],因此其應(yīng)用前景備受關(guān)注。本文綜述了腦電峰頻率在pDoC中的研究進(jìn)展及應(yīng)用,重點(diǎn)討論了其在評估pDoC患者臨床狀態(tài)、預(yù)后評估和恢復(fù)預(yù)測等方面的應(yīng)用,并探討了未來研究的潛在方向。
1腦電峰頻率譜與意識狀態(tài)的關(guān)系
目前對于pDoC的神經(jīng)網(wǎng)絡(luò)機(jī)制仍處于探索階段[17],國際尚未達(dá)成明確的統(tǒng)一觀念[18]。Schiff等[19]提出“中央環(huán)路模型”,即前腦中間回路和額頂網(wǎng)絡(luò)是意識障礙最關(guān)鍵的兩個神經(jīng)回路,中央丘腦是連接兩者的中樞,該回路的損傷是導(dǎo)致pDoC的直接原因。根據(jù)該模型,傳入神經(jīng)的阻滯程度、丘腦的活動與腦電圖模式之間存在著一些潛在的關(guān)系。因此,根據(jù)傳入神經(jīng)的阻滯程度,中央丘腦的活動可以分為靜止?fàn)顟B(tài)(“A型”“B型”)、爆發(fā)狀態(tài)(“C型”)或進(jìn)入強(qiáng)直狀態(tài)活動模式(“D型”)。這些不同的狀態(tài)反映了慢性意識障礙患者中央丘腦的不同活動水平,由此來判斷患者所處的意識狀態(tài)[16]。A型代表VS,腦電峰功率譜上表現(xiàn)為新皮質(zhì)神經(jīng)元完全性去傳導(dǎo),平均膜電位約為 -70mV[20] ,頻率lt;4Hz (沒有或只產(chǎn)生低頻震蕩);B型可以出現(xiàn)在MCS患者中,在腦電峰功率譜上表現(xiàn)為平均膜電位在 -65~ -60mV 之間,可自發(fā)產(chǎn)生約 4~8Hz 的振蕩(以0振蕩為特征);C型則是在B型的基礎(chǔ)上,產(chǎn)生更多的傳入活動,并在皮層投射區(qū)產(chǎn)生共存的約 5~9Hz 和 15~24Hz 腦電圖振蕩(具有θ和β振蕩)[21];D型代表正常的腦電圖活動,總體以8~13Hz 為主,在 15~40Hz 范圍內(nèi)波動(具有 ∝ 和 β 振蕩)[22]。由此,根據(jù)pDoC患者的腦電圖功率譜結(jié)果,即可對患者的腦電圖特征進(jìn)行判斷,從而進(jìn)行患者意識水平的分型。其中,腦電峰頻率功率譜ABCD與丘腦皮質(zhì)完整性的關(guān)系可表示為:A型代表完全受損,B型代表嚴(yán)重受損,C型代表非嚴(yán)重受損,D型代表正常[23]。其中,腦電峰頻率的減慢程度反映了意識障礙的程度,頻率小于 4Hz 為A型,代表植物狀態(tài);而頻率 5~7Hz 之間則為B型,代表 MCS[24] 。因此,根據(jù)腦電峰功率譜ABCD模型,可量化分期反映慢性意識障礙的不同時期,從而為分期及治療提供指導(dǎo)[25]
2腦電峰頻率在慢性意識障礙中的應(yīng)用
2.1臨床評估與診斷目前,依靠現(xiàn)有的標(biāo)準(zhǔn)化的神經(jīng)行為學(xué)的評估方法對確定pDoC患者分期的誤判率高達(dá) 40% 左右[13],嚴(yán)重影響了患者的病情評估及臨床判斷。近年來國際上一些學(xué)者提出通過腦電峰頻率ABCD模型來判斷pDoC患者的臨床分期,相關(guān)文獻(xiàn)也證實(shí)了此種評估方法的可靠性[26]。通過對 pDoC 患者腦電不同頻段活動峰值的分析,在此基礎(chǔ)上進(jìn)行分型(A、B、C、D型),可以客觀地評估患者的意識水平并明確診斷。例如,在植物狀態(tài)下,患者的腦電圖可能表現(xiàn)出高振幅的8波,而特定頻譜上沒有或只產(chǎn)生低頻震蕩,這對應(yīng)于腦電峰頻率ABCD模型上的A型,即神經(jīng)元處于靜息狀態(tài)。然而如果患者的腦電活動出現(xiàn)特定頻段的自發(fā)性震蕩,則是其意識水平恢復(fù)的潛在指標(biāo)。因此,腦電峰頻率ABCD模型可以作為判斷pDoC患者臨床分期的客觀化可靠標(biāo)準(zhǔn),同時對于pDoC患者的診斷分期及預(yù)后評估也具有重要的意義。在臨床上,同時采用臨床神經(jīng)評估[27](如GCS、CRS-R等)聯(lián)合腦電峰頻率ABCD可能對于pDoC患者的評估及診斷更為精準(zhǔn)。加州大學(xué)的一項(xiàng)研究顯示[28],通過對不同分期患者的腦電峰頻率ABCD 模型與格拉斯哥昏迷評分進(jìn)行對比,其具有顯著相關(guān)性,提示了該模型可能可以作為預(yù)測pDoC患者意識水平的生物標(biāo)志物。
2.2預(yù)后判斷pDoC患者長期面臨康復(fù)及后續(xù)預(yù)后治療的問題,這給家庭及社會帶來極大的經(jīng)濟(jì)及社會負(fù)擔(dān)[29]。因此,需要一種客觀化的評估方案來指導(dǎo)此類患者的預(yù)后及康復(fù)。腦電峰頻率的變化與慢性意識障礙患者的預(yù)后密切相關(guān)。研究表明,VS患者的腦電圖若存在持續(xù)的低頻8波活動,腦電峰頻率無或只有低頻自發(fā)性震蕩,通常預(yù)示著較差的預(yù)后[30-31]。而在一些患者中,隨著時間的推移,患者可能會產(chǎn)生自發(fā)性的意識恢復(fù),腦電圖頻率譜可能會發(fā)生變化,例如從以8波為主轉(zhuǎn)為表現(xiàn)出更多的0波或 ∝ 波,同時產(chǎn)生特定頻率的自發(fā)性震蕩,這可能提示患者具有一定的意識恢復(fù)潛力[26]。通過對腦電圖頻率譜的長期監(jiān)測,醫(yī)生能夠更好地預(yù)測患者意識恢復(fù)的潛力,并在此基礎(chǔ)上指導(dǎo)治療及后續(xù)康復(fù)。2.3指導(dǎo)治療對于pDoC 患者的治療來說,藥物治療、高壓氧等保守治療的效果并不令人滿意。近年來隨著神經(jīng)調(diào)控技術(shù)的發(fā)展,其在諸多領(lǐng)域如運(yùn)動障礙性疾病、精神類疾病、疼痛相關(guān)的效果得到了國內(nèi)的廣泛認(rèn)可[32],也為pDoC患者意識水平的恢復(fù)帶來的新的希望。經(jīng)典的神經(jīng)調(diào)控技術(shù)[33]分為無創(chuàng)與有創(chuàng)性,前者主要包括:(1)重復(fù)經(jīng)顱磁刺激;(2)經(jīng)顱直流電刺激;(3)外周神經(jīng)電刺激。無創(chuàng)性神經(jīng)調(diào)控目前發(fā)展不一[34],但僅有少量的文獻(xiàn)表明其對改善pDoC 患者意識狀態(tài)有明確效果[35-36]。有創(chuàng)性神經(jīng)調(diào)控技術(shù)主要[37]包括:(1)腦深部電刺激(deep brain stimulation,DBS)[38];(2)脊髓電刺激術(shù)(spinal cord stimulation,SCS)[39];(3)皮層電刺激、迷走神經(jīng)電刺激等[40]。其中最有希望及發(fā)展?jié)摿Φ臑镈BS與SCS,這兩種有創(chuàng)性神經(jīng)調(diào)控技術(shù)靶點(diǎn)不一,前者主要靶點(diǎn)為中央中核-束旁核復(fù)合(centermedian-parafascicular complex,CM-pf)[41],多篇文獻(xiàn)報道了數(shù)名CM-pfDBS治療pDoC的效果,患者術(shù)后的意識水平較術(shù)前得到了明顯改善[42-43]。然而DBS 對于患者的腦組織結(jié)構(gòu)要求比較嚴(yán)格,手術(shù)適應(yīng)癥范圍較小,大多數(shù)因外傷或腦出血而開顱損傷腦組織的患者無法進(jìn)行此類手術(shù)。而SCS的植入位置為頸-頸4的硬膜外間隙44],并且僅僅要求患者頸椎無明顯結(jié)構(gòu)性病變,手術(shù)適應(yīng)癥范圍較廣,絕大多數(shù)pDoC患者均符合手術(shù)適應(yīng)癥,且SCS相較于DBS更為安全、創(chuàng)傷小,目前已經(jīng)在國內(nèi)外得到了廣泛的開展及認(rèn)可,并且已經(jīng)取得了初步的成效。此外,對于促醒手術(shù)來說,手術(shù)適應(yīng)癥的把握一直是外科醫(yī)生的難題,準(zhǔn)確判斷患者的意識水平從而評估患者是否符合手術(shù)適應(yīng)癥是重中之重。近年來,國內(nèi)外眾多學(xué)者提出根據(jù)腦電峰頻率功率譜來指導(dǎo)促醒手術(shù)的手術(shù)適應(yīng)癥,B型及以上(MCS)的患者更適合于手術(shù)治療,手術(shù)可以加速患者意識的恢復(fù);而A型(VS)的患者則對手術(shù)反應(yīng)性不佳[45]。國際臨床神經(jīng)生理學(xué)聯(lián)盟專家共識也推薦“腦電峰頻率功率譜ABCD模型”來進(jìn)行pDoC患者的評估分期,以此來指導(dǎo)手術(shù)[16]。術(shù)前進(jìn)行詳細(xì)的神經(jīng)系統(tǒng)查體,準(zhǔn)確客觀的臨床神經(jīng)評估(如GCS、CRS-R等),同時聯(lián)合客觀化腦電峰頻率ABCD模型,以此來精準(zhǔn)判斷患者的意識狀態(tài);術(shù)后重新進(jìn)行相關(guān)評估,判斷患者意識水平的恢復(fù)情況,預(yù)測患者的預(yù)后,同樣也是重中之重。但是目前腦電峰頻率ABCD模型在國內(nèi)應(yīng)用較少,仍缺乏大量的樣本量來證實(shí)腦電峰頻率的使用價值,未來需要進(jìn)行多中心的大樣本臨床試驗(yàn)來驗(yàn)證該評估方法的可靠性。
3腦電峰頻率在臨床應(yīng)用中的挑戰(zhàn)與未來方向
盡管腦電峰頻率在pDoC中的應(yīng)用前景廣闊,但在臨床實(shí)踐中仍面臨一些挑戰(zhàn)。首先,腦電峰頻率的變化不僅受意識狀態(tài)的影響,還受患者個體差異、藥物干預(yù)等多種因素的影響,導(dǎo)致其解讀的復(fù)雜性增加。其次,其分析方法需要更加精確和高效,多模態(tài)腦電水平評估[46]可能是未來研究的熱門之一。3.1結(jié)合其他神經(jīng)影像學(xué)技術(shù)將腦電圖與功能性磁共振成像[47]、功能性近紅外光譜[48]等技術(shù)相結(jié)合,綜合評估患者的腦功能狀態(tài),可能有助于提高預(yù)后評估的準(zhǔn)確性。3.2機(jī)器學(xué)習(xí)和人工智能應(yīng)用通過機(jī)器學(xué)習(xí)算法對大量腦電圖數(shù)據(jù)進(jìn)行處理和分析,可以提高腦電頻率的自動化識別和模式分類精度,為臨床提供更加可靠的決策支持[49]。3.3個體化監(jiān)測與治療根據(jù)患者的個體化腦電峰頻率特征,結(jié)合患者多模態(tài)評估結(jié)果,制定更加精準(zhǔn)的治療及康復(fù)方案,最大程度上促進(jìn)患者意識水平的康復(fù)。3.4神經(jīng)調(diào)控技術(shù)的綜合應(yīng)用進(jìn)一步研究探索DBS及SCS等神經(jīng)調(diào)控技術(shù)的作用機(jī)制,探究可能的神經(jīng)環(huán)路,術(shù)前術(shù)后綜合多模態(tài)腦電聯(lián)合評估患者的意識水平,尋找可能的生物標(biāo)志物,為臨床提供客觀化的量化指標(biāo)。
4發(fā)展與展望
腦電峰頻率在pDoC中的意識評估、預(yù)后預(yù)測及恢復(fù)監(jiān)測等方面取得了初步的進(jìn)展,其無創(chuàng)、簡單、可視化的優(yōu)點(diǎn)為慢性意識障礙的臨床診療提供了客觀化指南。然而,其也有著傳統(tǒng)腦電圖的弊端,比如空間分辨率過低、對顱骨完整性要求嚴(yán)格等。盡管如此,腦電峰頻率作為慢性意識障礙的可能生物標(biāo)志物,未來將隨著技術(shù)進(jìn)步和多學(xué)科研究的深人,在臨床應(yīng)用中發(fā)揮越來越重要的作用。從精準(zhǔn)評估、有創(chuàng)性神經(jīng)調(diào)控的應(yīng)用以及個體化治療方案的選擇,腦電峰頻率有望成為提升pDoC患者治療效果、提高生活質(zhì)量的關(guān)鍵工具。
利益沖突:所有作者均聲明不存在利益沖突。
作者貢獻(xiàn)聲明:魏翔負(fù)責(zé)查閱、調(diào)研文獻(xiàn)及起草文章;魯廣函、劉敬軒負(fù)責(zé)整合統(tǒng)計文獻(xiàn);董文文、趙亮、邱暢負(fù)責(zé)指導(dǎo)文章起草、審閱文章;章文斌負(fù)責(zé)課題監(jiān)管與指導(dǎo)、文章的審閱及修訂。
[參考文獻(xiàn)]
[1]Annen J,F(xiàn)rasso G,van der LandeGJM,et al.Cerebral electrometaboliccoupling in disordered and normal statesof consciousness[J].Cell Rep,2023,42(8):112854.
[2]Wang Y,Liu WQ,Wang YY,et al.Long-term HD-tDCS modulates dynamic changes of brain activity onpatients with disordersof consciousness: a resting-state EEG study[J].Comput Biol Med, 2024,170:108084.
[3]Lee SW,Kim E,Jang TY,et al.Alterations of power spectral density in saliencenetwork during thought-action fusion induction paradigminobsessive-compulsivedisorder[J].Clin PsychopharmacolNeurosci,2022,20(3) :415-426.
[4].Simfukwe C,An SSA,Youn YC.Contribution of scalp regions machine leaming-based clasification of dementia utilizing resting-state qEEG signals[J].NeuropsychiatrDis Treat,2024,20:2375-2389.
[5]Greiner G, Zhang Y. Multi-modal EEG NEO-FFI with Trained Attention Layer(MENTAL)for mental disorder prediction[J]. BrainInform,2024,11(1) :26.
[6]Ballanti S,Campagnini S,Liuzzi P,et al. EEG-based methods for recovery prognosis of patients with disorders of consciousness: a systematic review[J]. Clin Neurophysiol,2022,144:98-114.
[7]Multi-Society Task Force on PVS. aspects of the persistent vegetative state(1)[J].NEngl JMed,1994,330(21):1499-1508.
[8]Boly M. Measuring the fading consciousness in the human brain [J].Curr Opin Neurol,2011,24(4):394-400.
[9]Practice guideline update recommendations summary: disorders of consciousness:report of the guideline development,dissemination, and implementation subcommittee of the american academy of neurology;the american congress of rehabilitation medicine;and the nationalinstituteondisability,independentliving,and rehabilitationresearch[J].Neurology,2019,93(3):135.
[10]Giacino JT,Ashwal S,ChildsN,et al. The minimally conscious state[J].Neurology,2002,58(3):349-353.
[11]MajerusS,Gill-ThwaitesH,AndrewsK,etal.Behavioral evaluationof consciousnessinsevere brain damage[J].ProgBrain Res,2005,150:397-413.
[12]Huang YZ,WuJR,Xu MP,et al.Current progresson characteristics ofintracranial electrophysiologyrelated prolonged disordersof consciousness[J].J Biomed Eng,2024,41(4):826-832.
[13]Schnakers C,Vanhaudenhuyse A,Giacino J,et al.Diagnostic accuracy of the vegetative and minimally conscious state: clinical consensus versus standardized neurobehavioral assessment[J].BMC Neurol,009,9:35.
[14]Carlson JM,LinDJ.Prognosticationin prolonged and chronic disorders of consciousness[J].SeminNeurol,2023,43(5):744-757.
[15]Drazyk D,Przewrocki K,G6rska-Klimowska U,et al.Distinct spectralprofilesofawakerestingEEGindisordersof consciousness:the role of frequency and pography of oscillations [J].Brain Topogr,2024,37(1):138-151.
[16]Comanducci A,Boly M,Claassen J,et al. Clinical and advanced neurophysiology in the prognostic and diagnostic evaluation of disordersof consciousness:review of an IFCN-endorsed expert group[J]. Clin Neurophysiol,2020,131(11) :2736-2765.
[17]CoulbornS,TaylorC,NaciL,etal.Disruptionsin effective connectivity within and between default mode network and anterior forebrain mesocircuit in prolonged disorders of consciousness[J]. Brain Sci,2021,11(6):749.
[18]Egawa S,Ader J,Claassen J. Recovery of consciousness after acute brain injury:anarrative review[J].JIntensive Care,2O24,12(1):37.
[19]Schiff ND.Recovery of consciousnessafter brain injury:a mesocircuit hypothesis[J]. Trends Neurosci,2010,33(1) :1-9.
[20]TimofeevI,GrenierF,Bazhenov M,etal.Origin of slow cortical oscillationsindeafferented cortical slabs[J].Cereb Cortex,2000, 10(12) :1185-1199.
[21]LlinasR,Urbano FJ,Leznik E,etal.Rhythmic and dysrhythmic thalamocortical dynamics:GABA systems and the edge ffct[J]. Trends Neurosci,2005,28(6):325-333.
[22]SchoerDLLopes DaSilvaF.Niemeyer'lctroecephaphy Basic principles,clinical applications,andrelated fields:Sixth edition[M].2012.
[23]Schiff N D.Mesocircuit Mechanisms Underlying Recovery of Consciousness Following Severe Brain Injuries:Model and Predictions[M]//MONTIMM,SANNITAWG.BrainFunction and Responsivenessin Disorders of Consciousness Cham; Springer International Publishing.2016:195-204.
[24]ForgacsPB,F(xiàn)rey HP,Velazquez A,et al.Dynamic regimesof neocorticalactivitylinkedcorticothalamicintegritycorrelatewith outcomes in acute anoxic brain injury after cardiac arrest[J].Ann Clin Transl Neurol,2017,4(2) :119-129.
[25]Curley WH,Bodien YG,Zhou DW,etal.Electrophysiological correlates of thalamocortical function inacute severe traumatic brain injury[J].Cortex,2022,152:136-152.
[26]Edlow BL,Claassen J,Schiff ND,et al. Recovery from disorders of consciousness : mechanisms,prognosis and emerging therapies[ J]. Nat Rev Neurol,2021,17(3):135-156.
[27]CorteseMD,Vatrano M,Arcuri F,et al.Behavioral scales variability in patients with prolonged disorders of consciousness [J]. Neurol Sci,2023,44(9) :3107-3122.
[28]Frohlich J,Crone JS,Johnson MA,et al.Neural oscillations track recovery of consciousness in acute traumatic brain injury patients [J].Hum Brain Mapp,2022,43(6):1804-1820.
[29]Liu Y,Kang XG,GaoQ,et al.Long-term oucomesamong patientswith prolonged disorders of consciousness[J].Brain Sci,2023,13194.
[30]Rosanova M,F(xiàn)ecchioM,Casarot S,etal.Sleep-likecortical OFFperiods disruptcausality and complexity in the brain of unresponsive wakefulness syndrome patients[J].Nat Commun,2018,9(1) :4427.
[31]Azabou E,NavarroV,KubisN,etal.Valueand mechanismsofEEG reactivity in the prognosis of patients with impaired consciousness :a systematic review[J].Crit Care,2018,22(1) :184.
[32]解虎濤,張建國.神經(jīng)調(diào)控技術(shù)的過去、現(xiàn)在和未來[J].四川 大學(xué)學(xué)報(醫(yī)學(xué)版),2022,53(04):559-563. Xie HT,Zhang JG.The past,present and future of neuromodulation techniques[J]. Journal of Sichuan University( Science Edition),2022,53(04) :559-563.
[33]Guerra A,CostantiniEM,MaattaS,etal.Disordersof consciousnessand electrophysiological treatment strategies:a review of the literature and new perspectives[J]. Curr Pharm Des, 2014,20(26):4248-4267.
[34]Wan XP,ZhangY,LiYH,et al.An update on noninvasive neuromodulation in the treatment of patients with prolonged disorders of consciousness[J].CNS Neurosci Ther,2024,30(5):e14757.
[35]BourdillonP,HermannB,SittJD,etal.Electromagnetic brain stimulation in patients with disorders of consciousness[J].Front Neurosci,2019,13:223.
[36]Thibaut A,Schiff N,Giacino J,etal. Therapeutic interventions in patients with prolonged disorders of consciousness[J].Lancet Neurol,2019,18(6) :600-614.
[37]Wu Y,Xu YY,Deng H,et al.Spinal cord stimulation and deep brain stimulation for disorders of consciousness:asystematic review and individual patient data analysis of 6O8 cases[J].Neurosurg Rev,2023,46(1):200.
[38]Raguz M,Predrijevac N,DlakaD,etal. Structural changesin brains of patients with disorders ofconsciousnesstreated with deep brain stimulation[J].Sci Rep,2021,11(1) :4401.
[39]YangY,He QH,Xia XY,et al.Long-term functional prognosis and related facrs of spinal cord stimulation in patientswith disorders of consciousness[J].CNS Neurosci Ther,2022,28(8):1249-1258.
[40]Wang YF,Zhang JL,Zhai WH,et al. Current status and prospect of transcutaneous auricular vagus nerve stimulation for disorders of consciousness[J].Front Neurosci,2024,17:1274432.
[41]HeJH,Zhang HR,Dang YY,etal.Electrophysiological characteristics of CM-pf indiagnosis and outcome of patientswith disorders of consciousness[J].Brain Stimul,2023,16(5): 1522-1532.
[42]Yang Y,Cao TQ,He SH,et al.Revolutionizing treatment for disorders of consciousness :a multidisciplinary review of advancements in deep brain stimulation[J].Mil Med Res,2024,11(1):81.
[43]Chudy D,DeletisV,Paradzik V,et al. Deep brain stimulation in disorders of consciousness:1O years of a single center experience [J].Sci Rep,2023,13(1) :19491.
[44]Wang Y,Bai Y,Xia XY,etal.Spinal cord stimulation modulates complexity of neural activities in patients with disordersof consciousness[J].Int J Neurosci,2020,130(7) :662-670.
[45]RagazzoniA,Cincotta M,Giovannelli F,etal..Clinical neurophysiology of prolonged disorders of consciousness:From diagnostic stimulation therapeutic neuromodulation[J].Clin Neurophysiol,2017,128(9) :1629-1646.
[46]Wang JY,Gao XY,Xiang ZC,et al. Evaluation of consciousness rehabilitation via neuroimaging methods[J].Front Hum Neurosci, 2023,17:1233499.
[47]Warbrick T. Simultaneous EEG-fMRI: what have we learned and what does the future hold?[J].Sensors(Basel),2022,22 (6) :2262.
[48]Blanco R,Preti MG,Koba C,et al. Comparing structure-function relationships in brain networksusing EEG and fNIRS[J].Sci Rep,2024,14(1) :28976.
[49]Craik A,He YT,Contreras-Vidal JL.Deeplearming for electroencephalogram(EEG)classification tasks:a review[J].J Neural Eng,2019,16(3):031001. 山 00