999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

邁向數智農業:場景、數據與智能

2025-07-19 00:00:00
農業大數據學報 2025年2期
關鍵詞:模態人工智能智能

全球農業正加速向數智驅動范式演進,核心是通過算法重構人類認知范式(如決策模型優化)與物理操作流程(如自主農機系統),實現數據智能與農業場景的深度耦合。這一進程催生了橫跨農學、數據科學、環境科學等的交叉領域——\"農業數據智能\"。《農業大數據學報》設立\"數據智能\"長期專欄,圍繞“場景-數據-智能”的創新三角,匯聚該領域前沿研究與高質量數據,推動農業數智化知識體系發展。專欄將聚焦以下方向:

農業數據的人工智能適配(AI-readyAgriData)

新一代人工智能(artificial intellgence,AI)展現了高度的數據依賴性,凸顯了農業等領域中既有數據正在面臨的人工智能適配(AI-ready)挑戰。專欄關注農業AI-ready 數據集的構建方法與技術,聚焦農業數據(遙感影像、表型組學、環境傳感等)高效標注、多模態對齊、智能適配度評價與規范等議題,促進AI-ready數據集建設與出版,推動滿足大模型訓練需求等智能適配農業領域知識庫的建設。

農業數據處理與分析的智能進化(AIforAgriData)

農業巨系統的開放性與復雜性,催生了高維異構、多模態、超大規模和時空異質數據的系統性涌現,傳統方法面臨維度災難、模態鴻溝和時空耦合建模等多重挑戰,需通過農學機理(例如,作物生長模型)與計算智能的深度耦合,建立“數據-知識-決策”貫通的農業數據智能處理范式。專欄關注農業數據的智能處理與分析,聚焦表型數據高通量采集與邊緣計算、農業時序數據的自適應特征提取、多源異構數據融合與跨模態知識發現等議題,促進農學機理驅動和“數據-模型”協同進化的數據處理與分析智能化演進。

場景驅動的農業數智融合(Scenario-IntelligenceFusion forAgri-Innovation)

人類認知活動的算法替代根本上改變了農業決策的形成與實施,融合日益廣泛深化的人類物理活動機械替代,越來越多的農業場景正在以“數據-知識-行動”的閉環模式成為通向數智農業的一級級臺階。專欄關注農業場景的數智融合創新,聚焦智能育種中的表型-基因關聯挖掘、精準種養中的動態決策系統、農業產業鏈的數字孿生建模等前沿方向,重點征集融合農學機理與數據智能的跨學科研究成果,推動形成可解釋、可復制的農業數智化范式。

智能時代的農業數據治理變革(AgriDataManagementwithinAI)

農業數據治理面臨開放共享與隱私保護、流通效率與權益歸屬、算法權力與倫理約束的三重悖論。人工智能在提供隱私計算和可解釋性工具的同時,也增加了治理復雜度。專欄關注智能時代農業數據的治理挑戰,聚焦農業數據隱私計算、可解釋AI、區塊鏈與數據保護、數據信托與小農戶數據資產化、農業數據的社會化流通和生態化協作等關鍵議題,推動效率與安全兼顧的農業數據治理體系。

開放復雜農業巨系統的數字化表達,超高維多模態大規模農業數據的智能化處理與分析,以及人機混合智能系統賦能的農業場景,正在塑造數智農業并激發一系列跨學科前沿研究。專欄以促進數智農業發展為目標,誠邀全球學者關注農業數據智能理論前沿與實踐邊界,共同推動農業數智化知識系統發展。

主編:周國民

Agriculture is rapidly evolving towards a data amp; intelligence-driven paradigm, centered on algorithmization of both human cognition (e.g.,by optimizing decision-making models) and physical operational processes (e.g.,by autonomous agricultural machinerysystems).This enables the deep integration of data, inteligence withinreal-world agricultural scenarios. Such advancements have catalyzed the emergence of an interdisciplinary field spaning agronomy, data science, and environmental science — \"Agricultural Data Intelligence (ADI)\".

The \"Dataamp; Inteligent\" section of The Journal ofAgricultural Big Data invites submissions for its long-term dedicated section,established to advance the frontierof agricultural data intelligence within the evolving paradigmof agriculture.The sectionis designed to foster cuting-edgeresearchand high-qualitydatacontributions in the field, focusing onthe innovative \"scenario-data-intelligence\"triangle,and promote the knowledge development of data and intelligent agriculture.

The section invites papers on the next topics.

1. Agricultural Data's Artificial Intelligence Adaptation (Al-ready AgriData)

The advent of next-generationartificial inteligence (AI) underscores the critical need for data to be AI-ready, particularly in agriculture where existing datasets facesignificant adaptationchallnges.This sub-theme solicits research on the construction and technical methodologies for AI-ready agricultural datasets.Topics of interest include eficient labelingof agriculturaldata (e.g.,remote sensing imagery,phenomics,environmental sensors),multimodal dataalignment,inteligent adaptabilityevaluation,andstandardization. Contributions thatadvance the development, publication,andutilizationof AI-readydatasets to meet the training demandsof large modelsand build knowledge bases for agricultural intelligence are especially encouraged.

2. Intelligent Evolution of Agricultural Data Processing and Analysis (Al for AgriData)

The complexityandopennessofagricultural mega-systems generate high-dimensional,heterogeneous,multimodal, andspatiotemporally diverse datasets,posing chalenges such as the curse of dimensionality,modal gaps,and spatiotemporal coupling modeling.This direction cals forresearch that integratesagronomic principles (e.g.,crop growth models)withcomputational intellgence to establish aseamless\"data-knowledge-decision\" paradigm.We invite submissions focusing on high-throughput phenotyping data collction and edge computing,adaptive feature extraction from agricultural time-series data,fusion of multi-source heterogeneous data,and cros-modal knowledge discovery. Emphasis is placed on studies that drive the intellgent evolution ofdata processing and analysis through agronomic mechanism-driven and \"data-model\" co-evolution approaches.

3.Scenario-Driven Agricultural Digital-Intelligent Fusion (Scenario-Intelligence Fusion for AgriInnovation)

The algorithmic substitution of human cognitive activities,combined with the mechanical replacement of physical tasks,istransformingagricultural decision-makingand implementation.Thissub-theme exploreshowagricultural scenariosareevolving intodigital-intelligent frameworks through\"data-knowledge-action\"closed loops.Weseek inovative research on phenome-genome assciation mining in intelligent breeding,dynamic decision systems in precision farming,and digital twin modeling across agricultural value chains.Priority willbe given to interdisciplinary studies that integrate agronomic principles with data inteligence,promoting interpretable and replicable paradigms for agricultural digitalization.

4. Agricultural Data Governance Transformation in the Intelligent Era (AgriData Management within AI)

The governance of agricultural data is confronted with paradoxes involving open sharing versus privacy protection, circulation eficiency versus rights atribution,and algorithmic authority versus ethical constraints.The rise of AI introduces tools like privacy computing and explainable AI, yet it also escalates governance complexity.This direction invites research addressing key governance challenges, including privacy-preserving computations, explainable AI in agriculture,blockchainfor data protection,data trusts,the asetization of data forsmalholder farmers,and the socialized circulation and ecologicalcollaboration ofagricultural data.Submissions that proposebalanced solutions for efficiency and security in agricultural data governance are highly encouraged.

The \"Data amp; Intelligent\" section aims to shape the future of digital agriculture by addressing the digital representation of open complex agricultural mega-systems,the intelligent processing and analysis of ultra-highdimensional multimodal large-scale agricultural data,andthe empowerment of human-machine hybrid inteligent systems inagricultural scenarios.We invite scholars worldwide to contribute to the theoretical frontiers and practical boundares of agricultural dataintellgence,colaboratively advancing the knowledge system of agricultural digitalization and intelligence.Submit your originalresearch to TheJournal ofAgricultural Big Data and join us in this transformative journey.

Editorin chief: ZHOUGuoMin

猜你喜歡
模態人工智能智能
2019:人工智能
商界(2019年12期)2019-01-03 06:59:05
智能前沿
文苑(2018年23期)2018-12-14 01:06:06
智能前沿
文苑(2018年19期)2018-11-09 01:30:14
智能前沿
文苑(2018年17期)2018-11-09 01:29:26
智能前沿
文苑(2018年21期)2018-11-09 01:22:32
人工智能與就業
IT經理世界(2018年20期)2018-10-24 02:38:24
數讀人工智能
小康(2017年16期)2017-06-07 09:00:59
下一幕,人工智能!
南風窗(2016年19期)2016-09-21 16:51:29
國內多模態教學研究回顧與展望
基于HHT和Prony算法的電力系統低頻振蕩模態識別
主站蜘蛛池模板: 国产97视频在线| www精品久久| 亚洲精品成人片在线播放| 欧美啪啪精品| 特级欧美视频aaaaaa| 欧美成人免费一区在线播放| 免费亚洲成人| 欧美日本不卡| 巨熟乳波霸若妻中文观看免费 | 白浆视频在线观看| 国产欧美视频一区二区三区| 亚洲午夜天堂| 亚洲第一国产综合| 热九九精品| 日韩第一页在线| 国产精品30p| 国产精品网拍在线| 在线视频亚洲色图| 欧美精品在线免费| 国产成人av一区二区三区| AV老司机AV天堂| 国产福利观看| 日韩成人午夜| 丁香婷婷综合激情| 亚洲一区色| 亚洲中文字幕国产av| 国产精品三区四区| 亚洲三级网站| 国产精品视频观看裸模 | 久久精品日日躁夜夜躁欧美| 欧美成人精品欧美一级乱黄| 亚洲人人视频| 亚洲国产成人麻豆精品| 国产精品亚洲精品爽爽| 亚洲三级成人| 91娇喘视频| 婷婷色中文| 亚洲看片网| 无码专区国产精品一区| 最新午夜男女福利片视频| 91原创视频在线| 国产男女XX00免费观看| 午夜色综合| 国产激爽大片在线播放| 福利在线一区| 欧美成人精品一区二区| 久久国产免费观看| 热99re99首页精品亚洲五月天| 国产乱子伦手机在线| 精品国产网| 国产一国产一有一级毛片视频| 国产拍在线| 国产精品免费露脸视频| 久久久久亚洲精品无码网站| 免费播放毛片| 色网站在线视频| 欧美一级黄片一区2区| 国产精品区网红主播在线观看| аⅴ资源中文在线天堂| 国产精品密蕾丝视频| 欧美成人精品欧美一级乱黄| 丰满人妻被猛烈进入无码| 亚洲综合久久一本伊一区| 真实国产乱子伦视频| a国产精品| 免费观看欧美性一级| 99re热精品视频国产免费| 激情综合图区| 久久久国产精品无码专区| 欧美日韩精品一区二区在线线 | 国产高清国内精品福利| 亚洲日韩精品伊甸| 日韩麻豆小视频| 亚洲最猛黑人xxxx黑人猛交| 亚洲精品无码AV电影在线播放| 全部无卡免费的毛片在线看| 欧美一区二区人人喊爽| 在线播放精品一区二区啪视频| 永久成人无码激情视频免费| 亚洲视屏在线观看| 免费又黄又爽又猛大片午夜| 91丝袜乱伦|