中圖分類號R965 文獻標志碼A 文章編號 1001-0408(2025)15-1942-05
DOI 10.6039/j.issn.1001-0408.2025.15.22
Research progressonthemechanismof metformininthe interventionof cognitiveimpairment-related diseases
LIU Yuan1,2,XU Yumin1,2,3,LIU Shiyu1,2,YAN Huayu1,2,YANG Xin1,2 ,XU Hongcai1,2,WU Yabol,2(1. Dept.of Encephalopathy,the First Afiliated Hospital of Henan University of Chinese Medicine,Zhengzhou 450003, China;2.The First Clinical Medical College,Henan University of Chinese Medicine,Zhengzhou 450046, China;3.Henan Province Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine,Zhengzhou 450046,China)
ABSTRACTCognitiveimpairment(CI)isaclinicalsyndromecharacterizedbyprogresivedeclineinadvancedcognitive functionssuchasmemory,thinking,andjudgment.Itsetiologyandpathogenesis arecomplex,andthereiscurrentlyalackof specificdruginterventions.Metformin,asafirst-linehypoglycemicdrugfortype2diabetes,notonlylowersbloodglucoselevels but alsoimprovesCI.Thisarticlereviewsandsummarzes thepharmacological efectsand mechanismsof metformininimproving Alzheimer'sdisease,diabetescognitiveimpairment,cognitiveimpairmentafterchemotherapyinordertoprovidenovelisights andapproaches forthe treatmentofCI-relateddiseases.StudieshaveshownthatthemechanismbywhichMETintervenesinCI mainly includesregulating β -amyloid protein and tau protein metabolism,reducing insulin resistance,inhibiting neuroinflammation, improvingsynapticplastity,improvingmitochondrialdysfunction,regulatinggutmicrobiotaandlipidmetabolism,etc.Future researchneeds tobeconductedthrough interdisciplinarycollaboration,fullyintegratingmultipleomicsdata,andcombining advanced technologies to further reveal their mechanisms of effect.
KEYWORDSmetformin;cognitiveimpairment;Alzheimer’sdisease;diabetescognitiveimpairment;pharmacologicalaction; mechanism research
認知障礙(cognitive impairment,CI)是以認知功能下降為核心癥狀的獲得性認知功能障礙綜合征,主要包括神經退行性疾病如阿爾茨海默病(Alzheimer'sdisease,AD)和非神經退行性疾病如糖尿病認知障礙、化療后CI、顱腦損傷及藥物因素等誘發的認知損傷[。據統計,2021年我國現存的AD及其他類型癡呆患者總數達1699萬例,約占全球患病人數的 29.8% ,且隨著我國步入深度老齡化社會,AD及其他類型癡呆患病率及死亡率逐年攀升2。由于現有改善認知的藥物選擇范圍小且療效有限,CI已成為我國重大的公共衛生問題。二甲雙胍(metformin,MET)是2型糖尿病(type2diabetes,T2DM)的一線用藥,已廣泛應用于臨床60余年[3]。相關研究發現,MET除了可以降血糖、減重、抗衰老、抗腫瘤,還可通過減少β淀粉樣蛋白( β -amyloid protein,Aβ)聚集、提高突觸可塑性、改善線粒體能量代謝、調節腸道菌群及脂質代謝等改善 CI[4-5] 。基于此,本文綜述了MET干預CI相關疾病的作用機制,以期為該類疾病的治療提供新思路、新方法。
1MET調節Aβ和tau蛋白代謝干預CI
Aβ在細胞外聚集形成的斑塊與tau蛋白過度磷酸化形成神經元纖維纏結,是AD典型的病理特征,其不僅會干擾神經細胞間正常通信,還可激活免疫系統引發炎癥反應,進一步損傷神經細胞,導致神經元凋亡。研究表明,腦內Aβ和tau蛋白高表達的人群較正常人群會出現神經活動速度減慢、注意力和記憶力減退的情況。MET能減輕小膠質細胞的自噬損傷,促進病理性Aβ和tau蛋白被吞噬,減少Aβ沉積。分子伴侶介導的自噬(chaperone-mediatedautophagy,CMA)是溶酶體降解機制之一,與AD發病機制有關。相關研究發現,在AD小鼠中,MET可通過CMA途徑,激活轉化生長因子β激活激酶1/核因子 κB (nuclearfactor κB,NF-κB ,抑制蛋白激酶 ∝ 熱休克同源蛋白70信號通路,降低Aβ細胞毒性,減少Aβ斑塊沉積[]
2MET降低胰島素抵抗干預CI
胰島素抵抗(insulinresistance,IR)是指機體對胰島素的敏感性減弱,可影響腦內葡萄糖代謝,引發血管舒張功能障礙、Aβ沉積與tau蛋白過度磷酸化、海馬神經元可塑性損傷、炎癥與氧化應激,從而導致CI。研究表明,MET和沙格列汀聯用可提高胰島素受體水平,改善炎癥和氧化應激,降低Aβ沉積和Tau蛋白磷酸化,提高乙酰膽堿和谷氨酸水平,改善D-半乳糖誘導的AD大鼠學習和記憶障礙[]。另外,MET還可激活磷酸化腺苷一磷酸活化的蛋白質激酶(phosphorylatedadenosinemonophosphate-activated protein kinase,p-AMPK)信號通路,促進突觸素、腦源性神經營養因子(brainderivedneurotrophic factor,BDNF)以及信使核糖核酸(messen-gerRNA,mRNA)表達,降低氧化應激和神經炎癥因子水平,升高胰島素降解酶水平,改善葡萄糖代謝,促進Aβ降解,改善AD小鼠神經病理。研究發現,蛋白激酶B(proteinkinaseB,AKT)可參與胰島素信號傳導、調節胰島素敏感性;MET經鼻腔給予AD小鼠后,可促進小鼠海馬和大腦皮層中AKT磷酸化,改善小鼠學習記憶障礙[12]。
研究發現,MET可通過調控沉默信息調節因子1/NOD樣受體蛋白3介導的神經炎癥及氧化應激損傷,改善糖尿病小鼠IR,促進糖脂代謝,進而改善小鼠的學習記憶能力[3]。另有研究發現,MET可抑制晚期糖基化終末產物(advanced glycation end product,AGE)/AGE 受體/NF- ??κB 信號通路,上調葡萄糖依賴性促胰島素多肽和胰高血糖素樣肽1水平,改善糖尿病小鼠海馬組織損傷和空間記憶障礙[14]
3 MET抑制神經炎癥干預CI
神經炎癥主要由星形膠質細胞與小膠質細胞異常活化、炎癥介質釋放、外周免疫細胞浸潤等介導,是CI發病的重要機制之一。研究發現,在CI患者或者CI動物及細胞模型中均可觀察到炎癥因子白細胞介素1β(in-terleukin-1,IL-1β)、IL-6、IL-18、腫瘤壞死因子 ∝ (tumornecrosis factor α ,TNF- ∝ )以及氧化應激因子丙二醛(malondialdehyde,MDA)、F2異前列烷等表達升高[5]
高脂飲食(high-fatdiet,HFD)誘導的CI也與大腦慢性低度炎癥狀態有關,而MET可激活磷脂酰肌醇3激酶(phosphoinositide3-kinase,PI3K/AKT信號通路,恢復垂體腺苷酸環化酶激活肽/血管活性腸肽(vasoactivein-testinalpeptide,VIP)系統穩態,抑制HFD引起的神經炎癥及認知損傷[]。Wei等研究發現,MET可通過抑制NF- ??κB 級聯反應,下調促炎因子IL-8、TNF- α?∝ 、IL-1β以及β -半乳糖苷酶表達,抑制神經炎癥,進而提高短壽命魚類的學習記憶能力。另外,MET還可調控AMPK/雷帕霉素靶蛋白(mammaliantargetof rapamycin,mTOR)信號通路,升高海馬線粒體自噬水平,降低促炎因子水平,活化小膠質細胞M2表型,抑制星形膠質細胞肥大,從而緩解 CI[18] 。相關研究發現,MET可通過調控NF σ?κB 抑制蛋白、激活干擾素調節因子3,發揮保護海馬神經元作用,從而減少神經炎癥和DNA損傷,進而改善放療導致的CI[19]。而且,MET還可抑制小膠質細胞活化和神經炎癥,從而改善創傷性腦損傷小鼠的 CI[20]
4MET提高突觸可塑性干預CI
突觸可塑性是學習記憶的基礎,突觸可塑性受損、突觸丟失是AD的早期病理變化。研究表明,AD患者腦組織中突觸蛋白密度降低、樹突棘形態異常、突觸靶向功能受損以及突觸內線粒體數量減少[21]。MET可通過調控核轉錄因子紅系2相關因子2(nuclearfactor-erythroid2-relatedfactor2,Nrf2)/葡萄糖-6-磷酸脫氫酶信號通路,減輕七氟醚誘導的大鼠側腦室室下區和齒狀回顆粒下區的神經損傷22]。此外,長期服用MET可活化Nrf2信號通路,抵抗氧化應激損傷,延緩神經元和大腦皮層萎縮,從而提高食蟹猴的認知能力[23]。MET與環境富集策略(即體育鍛煉、認知刺激和社會互動的組合,是一種非藥物治療策略)聯合可增強突觸可塑性,改善T2DM大鼠海馬依賴性記憶[24]
5MET改善線粒體功能障礙干預CI
線粒體是細胞功能的重要支點,可參與能量代謝、調節氧化應激、介導細胞內信號通路等,其功能障礙極易引發神經元能量供應受阻、氧化應激損傷、神經炎癥、神經元凋亡,從而驅動AD病程2。研究發現,MET可調控AMPK/mTOR信號通路,抑制線粒體復合物1活性,減輕氧化應激損傷,從而改善線粒體功能障礙[26]。另外,MET可調節星形膠質細胞-神經元-乳酸穿梭機制,減弱缺氧誘導因子1/丙酮酸脫氫酶激酶同工酶/丙酮酸脫氫酶信號通路傳導,增加葡萄糖攝取,緩解亞慢性鋁暴露誘導的線粒體能量代謝障礙,從而改善 CI[27] 。MET可上調AKT磷酸化水平,減少線粒體中活性氧的產生,恢復線粒體形態,改善神經退行性疾病細胞模型的線粒體損傷,提高學習記憶能力[28]。此外,相關研究發現,MET和苯丙氨酸聯用可抑制線粒體復合物1活性,減少線粒體膜通透性轉換孔開放,保護大腦神經元免受缺血、缺氧損害,從而提高認知功能[29]
6MET調節腸道菌群干預CI
腸道菌群可參與調控腦功能及認知行為,腸道菌群失調或通透性增加,可誘導慢性炎癥,從而導致血腦屏障損傷和神經退行性病變[30]。研究表明,與正常人群相比,AD患者腸道菌群的多樣性降低,變形桿菌、雙歧桿菌和噬菌體的豐度升高,厚壁菌門、梭菌科、毛螺菌科表達水平降低[3]。還有研究發現,MET可通過降低厚壁菌門和放線菌門豐度,升高擬桿菌屬、乳桿菌屬豐度,從而調節肥胖小鼠腸道菌群,抑制小膠質細胞活化和神經炎癥,進而改善肥胖小鼠 CI[32] 。Zhu等[3研究發現,MET可升高唾液乳桿菌、羅伊氏乳桿菌、雙歧桿菌等的豐度,抑制促炎因子IL-6介導的炎癥通路,從而改善衰老小鼠的CI。另外,有研究發現,MET可重塑衰老小鼠的腸道菌群,改變腸道干細胞分化傾向,促進杯狀細胞和黏蛋白2形成,降低腸道通透性,從而改善衰老小鼠的CI[34]。
7MET調節脂質代謝干預CI
腦脂質過氧化是AD發病的早期表現,AD患者血液中脂肪酸水平異常升高,大腦膠質細胞中存在較多的脂肪包涵體,從而影響腦實質和腦血管內Aβ的生成和轉運以及tau蛋白的過度磷酸化和聚集,進而觸發神經炎癥、氧化應激等級聯反應[35。研究表明,MET與花青素3-O-半乳糖苷聯用可調節快速老化小鼠的脂肪酸代謝,修復腸道屏障,從而改善小鼠的CI[3]。另有研究發現,MET聯合阿托伐他汀鈣片可顯著改善T2DM和血脂異常患者的糖化血紅蛋白和低密度脂蛋白膽固醇水平,從而降低患者發生CI的風險[5]
8其他干預機制
化療后CI是化療給藥后誘發的認知功能損傷,其潛在的病理機制與促炎細胞因子釋放、皮質醇水平升高、下丘腦-垂體-腎上腺軸功能失調、單胺類神經遞質系統損傷、線粒體損傷及氧化應激過度等有關3。研究發現,MET可通過上調海馬和前額皮質中雙皮質素、BDNF、Nrf2、過氧化氫酶、超氧化物歧化酶表達,降低腦內MDA水平,減弱神經元細胞凋亡,從而改善化療后CI[38] 。尿毒癥性腦病屬于代謝性腦病的范疇,主要由營養障礙、代謝紊亂等誘發,主要表現為意識障礙及認知能力下降。研究發現,MET與低劑量輻射聯合可減輕代謝毒素積聚、調節興奮性和抑制性神經遞質失衡,改善大鼠尿毒癥性腦病,從而改善 CI[39] 0
9 總結與展望
MET作為臨床一線降糖藥物,在CI相關疾病領域具有一定的研究基礎和應用前景。本文梳理了MET干預CI的作用機制研究進展,發現其可通過調節Aβ與tau蛋白代謝、降低IR、抑制神經炎癥、提高突觸可塑性、改善線粒體功能障礙、調節腸道菌群及脂質代謝等途徑減少神經元損傷,從而改善CI。由此可見,MET可通過多靶點調控機制發揮改善CI的作用,為CI相關疾病的治療提供了新方法。盡管MET在干預CI方面已取得了一定進展,但仍面臨以下困難與挑戰:(1)大部分研究以基礎研究為主,臨床研究偏少,在臨床試驗過程中缺乏統一的客觀評價指標及體系,這是未來研究需要關注的重點和難點。(2)現有研究并不完全支持MET在CI中的保護作用,甚至提示潛在風險,如在AD合并代謝綜合征的人群中,MET對CI無療效優勢,且易引發消化道不良反應[4。基于此,后續仍需多維度的藥理機制研究及大樣本、多中心、隨機、雙盲、對照臨床試驗來驗證其有效性及安全性。(3)MET代謝途徑廣泛,現有研究多聚焦于單靶點、單通路。鑒于CI為多因素、多病理、多環節的復雜疾病,未來研究需通過多學科交叉協作共建,依托人工智能、大數據、生物樣本庫、系統生物學整合多組學數據,利用單細胞測序等先進技術揭示其效應機制,為CI相關疾病的治療提供理論支撐和應用依據。
參考文獻
[1]中國癡呆與認知障礙指南寫作組,中國醫師協會神經內 科醫師分會認知障礙疾病專業委員會.2018中國癡呆 與認知障礙診治指南(一):癡呆及其分類診斷標準[J]. 中華醫學雜志,2018,98(13):965-70.
[2]王剛,齊金蕾,劉馨雅,等.中國阿爾茨海默病報告2024 [J].診斷學理論與實踐,2024,23(3):219-256.
[ 3]BAILEY C J. Metformin: historical overview[J]. Diabetologia,2017,60(9):1566-1576.
[4]CUI W X,LV C,GENG P L,et al. Novel targets and therapies of metformin in dementia:old drug,new insights [J].Front Pharmacol,2024,15:1415740.
[5]LEEJE,YU SH,KIMSR,et al. Efficacy and safety of metformin and atorvastatin combination therapy vs. monotherapy with either drug in type 2 diabetes melitus and dyslipidemia patients(ATOMIC):double-blinded randomized controlled trial[J].Diabetes Metab J,2024,48 (4):730-739.
[6]GALLEGO-RUDOLF J,WIESMAN AI,BINETTE AP, et al. Synergistic association of A β and tau pathology with cortical neurophysiology and cognitive decline in asymptomatic older adults[J]. Nat Neurosci,2024,27(11):2130- 2137.
[7]CHEN Y X,ZHAO S,FAN Z Q,et al. Metformin attenuates plaque-associated tau pathology and reduces amyloidβ burden in APP/PS1 mice[J].Alzheimers Res Ther, 2021,13(1):40.
[8]XU X Y,SUN YQ,CEN X F,et al. Metformin activates chaperone-mediated autophagy and improves disease pathologies in an Alzheimer disease mouse model[J]. Protein Cell,2021,12(10):769-787.
[9]栗西彤,關紅,楊樂.胰島素抵抗與2型糖尿病認知功能障 礙的研究進展[J].中國老年學雜志,2023,43(1):239-242.
[10]KENAWY S,HEGAZYR,HASSAN A,et al. Involvement of insulin resistance in D-galactose-induced agerelated dementia in rats: protective role of metformin and saxagliptin[J]. PLoS One,2017,12(8):e0183565.
[11]LU X Y,HUANG S,CHEN QB,et al. Metformin ameliorates Aβ pathology by insulin-degrading enzyme in a transgenic mouse model of Alzheimer's disease[J]. Oxid Med Cell Longev,2020,2020:2315106.
[12]KAZKAYASII,TELLI G,NEMUTLU E,et al.Intranasal metformin treatment ameliorates cognitive functions via insulin signaling pathway in ICV-STZ-induced mice model of Alzheimer's disease[J].Life Sci,2022,299: 120538.
[13]HU T,WEI JW,ZHENG JY,et al.Metformin improves cognitive dysfunction through SIRT1/NLRP3 pathwaymediated neuroinflammation in db/db mice[J]. JMol Med (Berl),2024,102(9):1101-1115.
[14] ZHANG W W,ZHAO L X,ZHANG JW,et al. Metformin improves cognitive impairment in diabetic mice induced by a combination of streptozotocin and isoflurane anesthesia[J]. Bioengineered,2021,12(2):10982-10993.
[15]TWAROWSKI B,HERBET M. Inflammatory processes in Alzheimer's disease-pathomechanism,diagnosis and treatment:a review[J]. Int JMol Sci,2023,24(7):6518.
[16]MANDWIE M, KARUNIA J, NIAZ A,et al. Metformin treatment attenuates brain inflammation and rescues PACAP/VIP neuropeptide alterations in mice fed a highfat diet[J].Int JMol Sci,2021,22(24):13660.
[17]WEI JT,QI H,LIUKK,et al.Effects of metformin on life span,cognitive ability,and inflammatory response in a short-lived fish[J].JGerontol A Biol SciMed Sci,2020, 75(11):2042-2050.
[18]KODALI M,ATTALURI S,MADHU L N,et al. Metformin treatment in late middle age improves cognitive function with alleviation of microglial activation and enhancement of autophagy in the hippocampus[J]. Aging Cell, 2021,20(2):e13277.
[19]XIANG JB,LUY M,QUAN C,et al.Metformin protects radiation-induced early braininjurybyreducing inflammation and DNA damage[J].Brain Sci,2023,13(4):645.
[20]DIBONAVL,SHAH MK,KRAUSE KJ,et al. Metformin reduces neuroinflammation and improves cognitive functions after traumatic brain injury[J]. Neurosci Res, 2021,172:99-109.
[21]GRIFFITHS J,GRANT S G N. Synapse pathology in Alzheimer’s disease[J]. Semin Cell Dev Biol,2023,139: 13-23.
[22]FAN P,LU Y Y,WEI HD,et al.Metformin attenuates sevoflurane-induced neurogenesis damage and cognitive impairment: involvement of the Nrf2/G6PD pathway[J]. Metab Brain Dis,2023,38(6):2037-2053.
[23]YANG Y H,LU X Y,LIU N,et al. Metformin decelerates aging clock in male monkeys[J]. Cell,2024,187(22): 6358-6378.e29.
[24]ISMAIL T R, YAP C G,NAIDU R,et al. Environmental enrichmentand the combined interventionsofEE and metforminenhance hippocampal neuron survival and hippocampal-dependent memory in type 2 diabetic rats under stress through the BDNF-TrkB signaling Dathwavs[J1. Biomed Pharmacother,20Z4,175:116729.
[25]ASHLEIGH T,SWERDLOW R H,BEAL MF. The role of mitochondrial dysfunction in Alzheimer’s disease pathogenesis[J].AlzheimersDement,2023,19(1): 333-342.
[26]FENG J,WANG XH,YE X C,et al. Mitochondria as an important target of metformin:the mechanism of action, toxic and side effects,and new therapeutic applications[J]. Pharmacol Res,2022,177:106114.
[27]SONG Y S,LIU ZY,ZHU XY,et al. Metformin alleviates the cognitive impairment caused by aluminum by improving energy metabolism disorders in mice[J]. Biochem Pharmacol,2022,202:115140.
[28]FENG Y Y,XU ZY,JIN HF,et al. Metformin ameliorates mitochondrial damage induced by C9orf72 poly (GR)via upregulating AKT phosphorylation[J]. J Cell Biochem,2024,125(3):e30526.
[29]SKEMIENE K,REKUVIENE E,JEKABSONE A,et al. Comparisonofeffectsofmetformin,phenformin,and inhibitors of mitochondrial complex I on mitochondrial permeability transition and ischemic brain injury[J]. Biomolecules,2020,10(10):1400.
[30]HESTON M B,HANSLIK K L,ZARBOCK K R,et al. Gut inflammation associated with age and Alzheimer' s disease pathology:a human cohort study[J]. Sci Rep, 2023,13(1) :18924.
[31]HUNG C C,CHANG C C,HUANG C W,et al. Gut microbiota in patients with Alzheimer’s disease spectrum: a systematic review and meta-analysis[J].Aging (Albany NY),2022,14(1):477-496.
[32]MA XY,XIAO W C,LI H,et al. Metformin restores hippocampal neurogenesis and learning and memory via regulating gut microbiota in the obese mouse model[J]. Brain Behav Immun,2021,95:68-83.
[33] ZHU X Q,SHEN JY,FENG S Y,et al.Akkermansia muciniphila,which is enriched in the gut microbiota by metformin,improves cognitive function in aged mice by reducing the proinflammatory cytokine interleukin-6[J]. Microbiome,2023,11(1):120.
[34]AHMADI S,RAZAZANA,NAGPAL R,et al.Metformin reduces aging-related leaky gut and improves cognitive function by beneficially modulating gut microbiome/goblet cell/mucin axis[J]. J Gerontol A Biol Sci Med Sci, 2020,75(7):e9-e21.
[35]CERASUOLO M,DI MEO I,AURIEMMA M C,et al. Exploring the dynamic changes of brain lipids,lipid rafts, and lipid droplets in aging and Alzheimer’s disease[J]. Biomolecules,2024,14(11):1362.
[36]WEN H C,TIANHH,LIU C,et al. Metformin and cyanidin 3-O-galactoside from Aronia melanocarpa synergistically alleviate cognitive impairment in SAMP8 mice[J]. Food Funct,2021,12(21):10994-11008.
[37]WINOCUR G,JOHNSTON I,CASTEL H. Chem0- therapy and cognition:international cognition and cancer task force recommendations for harmonising preclinical research[J]. Cancer Treat Rev,2018,69:72-83.
[38]SRITAWAN N, SUWANNAKOT K, NAEWLA S, et al. Effect of metformin treatment on memory and hippocampal neurogenesis decline correlated with oxidative stress induced by methotrexate in rats[J]. Biomed Pharmacother, 2021,144:112280.
[39]HASAN HF,RASHED L A,EL BAKARY N M. Concerted outcome of metformin and low dose of radiation in modulation of cisplatin induced uremic encephalopathy via renal and neural preservation[J].Life Sci,2O21,276: 119429.
[40]張唯聰,劉小倩,王瑛,等.二甲雙胍聯合多奈哌齊治療 阿爾茨海默病的臨床效果[J].中國當代醫藥,2023,30 (8):11-15. (收稿日期:2025-04-10修回日期:2025-07-07) (編輯.康曉菜)