[摘要] 巨噬細胞是母胎界面的第二大細胞群,M1型M2型巨噬細胞的極化平衡是成功妊娠的必要條件。本文歸納總結巨噬細胞及其極化在母胎界面中的作用,深入探討其在正常妊娠及復發性流產中的具體機制,為發掘改善妊娠結局新療法提供新的靶點與思路。
[關鍵詞] 蛻膜巨噬細胞;霍夫鮑爾細胞;妊娠;母胎界面
[中圖分類號] R714" """"[文獻標識碼] A """""[DOI] 10.3969/j.issn.1673-9701.2025.23.024
母胎界面是一個由母體來源的蛻膜和胎兒來源的胎盤組成的復雜免疫動態環境。在整個妊娠過程中,母胎界面需在保證半同種異體移植物胎兒存活發育與激活免疫防御抵抗病原體中維持平衡[1]。巨噬細胞是母胎界面的第二大細胞群,母胎界面的微環境刺激決定巨噬細胞的表型和功效。巨噬細胞在極化過程中可分化為M1和M2兩種亞型,在組織重塑、碎片清除和正常分娩中發揮作用[2]。妊娠期間,母胎界面的M1型和M2型巨噬細胞比例動態變化,以保護胎兒免受母體免疫系統的負面影響。M2型巨噬細胞占比高,其免疫抑制特性對維持妊娠和胚胎免疫耐受至關重要。M1型/M2型巨噬細胞的極化平衡是正常妊娠的重要條件[3]。巨噬細胞極化異常可導致滋養細胞侵襲缺陷、子宮血管重構不足等,最終導致不良妊娠結局[4]。
1" 巨噬細胞亞群及極化狀態
人妊娠早期蛻膜巨噬細胞依據C-C趨化因子受體2(C-C chemokine receptor type 2,CCR2)和整合素αⅩ(integrin alpha-Ⅹ,CD11c)分為3種不同亞群[5]。CCR2-CD11cLO CD11clow是最豐富的巨噬細胞亞群,在蛻膜中均勻分布。CCR2+CD11cHI CD11chigh巨噬細胞主要分布于絨毛外滋養細胞近端。血紅素加氧酶-1(heme oxygenase-1,HMOX1)陽性巨噬細胞亞群CCR2-CD11cHI是一種新的蛻膜巨噬細胞群體,在3種巨噬細胞亞群中水平最低,精準定位于絨毛外滋養細胞近端。
考慮到CCR2+CD11cHI巨噬細胞亞群的促炎特性,認為其是M1型巨噬細胞,CCR2-CD11cLO和CCR2-CD11cHI巨噬細胞亞群被認為是傾向于抗炎的M2型巨噬細胞。CCR2-CD11cLO巨噬細胞亞群在母胎界面占比高達80%,通常認為蛻膜巨噬細胞以M2型為主。雖然人們尚未在母胎界面檢測到HMOX1陽性巨噬細胞有廣泛表達,但有報道認為HMOX1在人滋養細胞中表達,并在妊娠期間發揮重要作用[6]。
巨噬細胞的極化過程是指其在特定微環境刺激下,通過接收不同信號而表現出不同的功能表型。巨噬細胞主要分化為M1型和M2型。M1型M2型巨噬細胞極化維持動態平衡,參與感染控制、組織修復、血管生成和免疫調節等過程[7]。巨噬細胞被γ干擾素(interferon-γ,IFN-γ)、腫瘤壞死因子-α(tumor necrosis factor-α,TNF-α)等促炎性細胞因子激活時,可極化為M1型巨噬細胞,其特征性細胞表面標志物包括Toll樣受體(toll-like receptor,TLR)-2、TLR-4、CD80和CD86[8]。這些細胞釋放的促炎性細胞因子給予尚未極化巨噬細胞正反饋,進而極化更多M1型巨噬細胞。M2型巨噬細胞的極化是一種機體對外源細胞因子的應答機制,這些外源細胞因子包括白細胞介素(interleukin,IL)-4、IL-13和轉化生長因子-β(transforming growth factor-β,TGF-β)等。其中,IL-4和IL-13可直接激活M2型巨噬細胞[9]。
2" 巨噬細胞在正常妊娠中的作用
蛻膜巨噬細胞的極化模式隨胎齡變化而變化。受精后首日,子宮內M1型與M2型巨噬細胞的比值達1.6;受精后第4天,該比值降至1.45。研究表明巨噬細胞在胚胎植入窗口期主要極化為M1型巨噬細胞;當滋養層細胞侵入子宮基質并與之附著于子宮內膜上時,巨噬細胞變為動態平衡的M1型與M2型混合譜直至孕中期,參與子宮血管重塑,保證胎兒發育所需血供充足[10]。胎盤發育完成后,多數蛻膜巨噬細胞向M2型極化,這一極化過程有助于母體建立對半同種異體移植物胚胎的免疫耐受[11]。此外,蛻膜巨噬細胞可通過減少蛻膜自然殺傷細胞的細胞溶解和調節適應性T細胞免疫反應增強母胎界面的免疫耐受[12]。足月分娩時,M1型蛻膜巨噬細胞數量高于足月未分娩時,而這些細胞比妊娠中期有更高的IL-12分泌水平及更低的IL-10、TGF-β水平,表明蛻膜巨噬細胞參與分娩的啟動,促炎巨噬細胞在足月分娩中發揮重要作用[13]。
2.1" 控制感染
母胎界面的“免疫特權”狀態阻礙母體對半同種異體胚胎細胞產生的排斥反應,蛻膜巨噬細胞在控制感染中發揮積極作用[14]。蛻膜自然殺傷細胞分泌的IFN-γ誘導蛻膜巨噬細胞極化,使蛻膜巨噬細胞發揮殺傷病原體、控制感染的功能。蛻膜巨噬細胞表達高水平TLR,這些受體促進蛻膜巨噬細胞分泌細胞因子,并在對病原體的免疫應答啟動過程中維持胎兒耐受免疫環境兼容[15]。
2.2" 促進滋養層侵襲
研究發現蛻膜巨噬細胞可分泌抑制細胞滋養層裂解的TGF-β1及促進滋養層侵襲的IL-1β[16]。滋養層細胞中基質金屬蛋白酶(matrix metalloproteinase,MMP)-9和MMP-2活性與IL-1β濃度成正比[17]。可溶性人白細胞抗原G5(soluble human leucocyte antigen G5,sHLA-G5)可促使CD163表達水平升高、CD86表達水平降低,經sHLA-G5誘導而極化的巨噬細胞可促進IL-6的分泌,誘導滋養細胞的侵襲[18]。G-CSF作為M2型巨噬細胞來源的一種關鍵因子可促進滋養層細胞的遷移和侵襲,而這一促進作用通過激活磷脂酰肌醇3激酶/蛋白激酶B/胞外信號調節激酶1/2信號通路實現[19]。M1型巨噬細胞外泌體還可通過靶向調控TNF受體相關因子6(TNF receptor-associated factor 6,TRAF6)參與滋養層細胞的遷移和侵襲[20]。
2.3" 參與子宮螺旋動脈重塑
蛻膜的血管生成和螺旋動脈重塑對維持胎兒血供、營養及正常妊娠必不可少。研究指出巨噬細胞在蛻膜螺旋動脈重構初始階段發揮關鍵作用[21]。在胚胎著床階段,蛻膜巨噬細胞可通過分泌血管內皮生長因子(vascular endothelial growth factor,VEGF)、胎盤生長因子及其受體fms樣酪氨酸激酶-1(fms-like tyrosine kinase-1,Flt-1)調節血管重塑[22]。添加蛋白激酶C(protein kinase C,PKC)抑制劑后,脂多糖誘導巨噬細胞產生的可溶性Flt-1分泌量顯著降低,而VEGF分泌量增加,PKC的磷酸化是誘導VEGF表達的必要條件[23]。在妊娠晚期,妊娠特異性糖蛋白(pregnancy-specific glycoprotein,PSG)是母體血液里含量最豐富的胎兒蛋白。研究顯示在小鼠RAW264.7細胞系及源自人血的單核巨噬細胞中,PSG1(人PSG家族中含量最豐富的成員)、PSG22(小鼠妊娠早期表達量最高的PSG)均可促使VEGF表達水平顯著升高[24]。
2.4" 對凋亡細胞的胞葬作用
巨噬細胞具有清除凋亡細胞的能力,這一行為對滋養細胞侵襲和螺旋動脈重構起促進作用,且在妊娠期蛻膜化進程與維持母胎界面免疫穩態方面發揮關鍵作用[25]。在巨噬細胞吞噬滋養層細胞碎片的過程中,IL-12、p70、IL-1β和IL-8等促炎因子的表達水平呈下調趨勢,而IL-10、IL-6、IL-1受體a和吲哚胺2,3-雙加氧酶等抗炎因子的表達水平呈顯著上調趨勢[26]。此外有學者發現在血管平滑肌細胞(vascular smooth muscle cell,VSMC)凋亡過程中,分形細胞素和鈣網蛋白的表達水平顯著升高,證實蛻膜巨噬細胞通過吞噬VSMC參與子宮螺旋動脈重構[27]。無論是sHLA-G5還是來源于滋養細胞的TGF-β均可觸發巨噬細胞或單核細胞向M2型巨噬細胞分化,并增強其吞噬能力。在蛻膜巨噬細胞識別與吞噬凋亡細胞的過程中,T細胞免疫球蛋白黏蛋白分子-3發揮重要作用[28]。蛻膜巨噬細胞分泌IL-1β、TNF-α等促炎因子誘導巨噬細胞集落刺激因子表達,啟動胱天蛋白酶(cysteinyl aspartate specific proteinase,caspase)依賴細胞凋亡[29]。研究表明蛻膜巨噬細胞對凋亡細胞的吞噬在母胎界面中是活躍的,可阻止自身抗原的釋放并促進蛻膜巨噬細胞分泌抗炎性細胞因子[30]。
3" 巨噬細胞在復發性流產中的作用
M1型巨噬細胞具有促炎作用,M2型巨噬細胞具有抗炎作用。正常妊娠情況下,母胎界面以M2型巨噬細胞為主,并維持動態平衡。若該動態平衡向M1型偏移,則可能發生胚胎丟失,甚至發生復發性流產(recurrent abortion,RA)。M1型巨噬細胞通過產生大量促炎性細胞因子,如TNF-α、IL-6和IL-1β介導炎癥反應[31]。M2型巨噬細胞數量的減少及M1型巨噬細胞數量的增多與RA的發生密切相關[32]。研究表明與正常妊娠相比,RA患者的蛻膜巨噬細胞表現為M1型,IL-33分泌較多,而其受體ST2的表達量則下降;且與正常妊娠患者的蛻膜巨噬細胞相比,RA患者的蛻膜巨噬細胞具有更強大的清除凋亡蛻膜基質細胞的胞吞作用[33]。RA患者蛻膜巨噬細胞中過氧化物酶體增殖物激活受體γ的減少可抑制M2型巨噬細胞極化,導致胎兒特定性炎癥反應及RA的發生[34]。抑微管裝配蛋白-1(stathmin-1,STMN1)是一種參與滋養層細胞增殖和侵襲的微管調控蛋白,受TNF-α調控。M1型巨噬細胞分泌過多的TNF-α可導致STMN1水平下降,抑制滋養層細胞的增殖和侵襲,促進RA的發生[35]。RA患者絨毛組織中的Zeste同源物增強子2(enhancer of Zeste homolog 2,EZH2)的表達水平顯著降低,而EZH2的下調可誘導M1型巨噬細胞的極化[36]。導致RA發生的因素之一是巨噬細胞可誘導Fas配體(Fas ligand,FasL)介導的細胞凋亡異常[37]。研究發現與對照組相比,RA患者M1型巨噬細胞表面的FasL表達水平顯著上調,Fas受體與FasL結合可激活細胞內caspase相關級聯反應,導致細胞凋亡[38]。
4" 小結與展望
蛻膜巨噬細胞參與感染控制、滋養層細胞侵襲、血管重塑、組織修復及免疫耐受等妊娠關鍵過程,但其在正常及病理妊娠中的功能和機制尚未完全闡明。鑒于蛻膜巨噬細胞功能的可塑性,其有望成為干預不良妊娠的潛在靶點。未來需開展更多基礎實驗和臨床研究,深入探索其功能,為妊娠相關疾病的預防和治療提供新策略。
利益沖突:所有作者均聲明不存在利益沖突。
[參考文獻]
[1]"" SEMMES E C, COYNE C B. Innate immune defenses at the maternal-fetal interface[J]. Curr Opin Immunol, 2022, 74: 60–67.
[2]"" YANG F, ZHENG Q, JIN L. Dynamic function and composition changes of immune cells during normal and pathological pregnancy at the maternal-fetal interface[J]. Front Immunol, 2019, 10: 2317.
[3]"" SCHONKEREN D, VAN DER HOORN M L, KHEDOE P, et al. Differential distribution and phenotype of decidual macrophages in preeclamptic versus control pregnancies[J]. Am J Pathol, 2011, 178(2): 709–717.
[4]"" ZHU X, LIU H, ZHANG Z, et al. MiR-103 protects from recurrent spontaneous abortion via inhibiting STAT1 mediated M1 macrophage polarization[H]. Int J Biol Sci, 2020, 16(12): 2248–2264.
[5]"" JIANG X, DU MR, LI M, et al. Three macrophage subsets are identified in the uterus during early human pregnancy[J]. Cell Mol Immunol, 2018, 15(12): 1027–1037.
[6]"" GALLARDO V, GONZáLEZ M, TOLEDO F, et al. Role of heme oxygenase 1 and human chorionic gonadotropin in pregnancy associated diseases[J]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866(2): 165522.
[7]"" MANTOVANI A, BISWAS S K, GALDIERO M R, ""et al. Macrophage plasticity and polarization in tissue repair and remodeling[J]. J Pathol, 2013, 229(2): 176–185.
[8]"" MARTINEZ F O, GORDON S. The M1 and M2 paradigm of macrophage activation: Time for reassessment[J]. F1000Prime Rep, 2014, 6: 13.
[9]"" O'SHEA J J, PAUL W E. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells[J]. Science, 2010, 327(5969): 1098–1102.
[10] MOR G, CARDENAS I, ABRAHAMS V, et al. Inflammation and pregnancy: The role of the immune system at the implantation site[J]. Ann N Y Acad Sci, 2011, 1221(1): 80–87.
[11] SVENSSON J, JENMALM M C, MATUSSEK A, et al. Macrophages at the fetal-maternal interface express markers of alternative activation and are induced by M-CSF and IL-10[J]. J Immunol, 2011, 187(7): 3671–3682.
[12] HOUSER B L. Decidual macrophages and their roles at the maternal-fetal interface[J]. Yale J Biol Med, 2012, 85(1): 105–118.
[13] WANG H, HE M, HOU Y, et al. Role of decidual CD14+ macrophages in the homeostasis of maternal-fetal interface and the differentiation capacity of the cells during pregnancy and parturition[J]. Placenta, 2016, 38: 76–83.
[14] QUILLAY H, EL COSTA H, DURIEZ M, et al. NK cells control HIV-1 infection of macrophages through soluble factors and cellular contacts in the human decidua[J]. Retrovirology, 2016, 13(1): 39.
[15] DURIEZ M, QUILLAY H, MADEC Y, et al. Human decidual macrophages and NK cells differentially express toll-like receptors and display distinct cytokine profiles upon TLR stimulation[J]. Front Microbiol, 2014, 5: 316.
[16] CO E C, GORMLEY M, KAPIDZIC M, et al. Maternal decidual macrophages inhibit NK cell killing of invasive cytotrophoblasts during human pregnancy[J]. Biol Reprod, 2013, 88(6): 155.
[17] SHARMA S, GODBOLE G, MODI D. Decidual control of trophoblast invasion[J]. Am J Reprod Immunol, 2016, 75(3): 341–350.
[18] LEE C L, GUO Y, SO K H, et al. Soluble human leukocyte antigen G5 polarizes differentiation of macrophages toward a decidual macrophage-like phenotype[J]. Hum Reprod, 2015, 30(10): 2263–2274.
[19] DING J, YANG C, ZHANG Y, et al. M2 macrophage- derived G-CSF promotes trophoblasts EMT, invasion and migration via activating PI3K/Akt/ Erk1/2 pathway to mediate normal pregnancy[J]. J Cell Mol Med, 2021, 25(4): 2136–2147.
[20] DING J, ZHANG Y, CAI X, et al. Extracellular vesicles derived from M1 macrophages deliver miR-146a-5p and miR-146b-5p to suppress trophoblast migration and invasion by targeting TRAF6 in recurrent spontaneous abortion[J]. Theranostics, 2021, 11(12): 5813–5830.
[21] HAZAN A D, SMITH S D, JONES R L, et al. Vascular-leukocyte interactions: Mechanisms of human decidual spiral artery remodeling in vitro[J]. Am J Pathol, 2010, 177(2): 1017–1030.
[22] KUMAZAKI K, NAKAYAMA M, SUEHARA N, et al. Expression of vascular endothelial growth factor, placental growth factor, and their receptors Flt-1 and KDR in human placenta under pathologic conditions[J]. Hum Pathol, 2002, 33(11): 1069–1077.
[23] LEE M C, WEI S C, TSAI-WU J J, et al. Novel PKC signaling is required for LPS-induced soluble Flt-1 expression in macrophages[J]. J Leukoc Biol, 2008, 84(3): 835–841.
[24] BLOIS S M, TIRADO-GONZáLEZ I, WU J, et al. Early expression of pregnancy-specific glycoprotein 22 (PSG22) by trophoblast cells modulates angiogenesis in mice[J]. Biol Reprod, 2012, 86(6): 191.
[25] RASHCHUPKIN I M, MAKSIMOVA A A, SAKHNO L V, et al. Effect of M2 macrophage-derived soluble factors on proliferation and apoptosis of SH-SY5Y cells[J]. Bull Exp Biol Med, 2021, 171(1): 45–48.
[26] ABUMAREE M H, CHAMLEY L W, BADRI M, et al. Trophoblast debris modulates the expression of immune proteins in macrophages: A key to maternal tolerance of the fetal allograft?[J]. J Reprod Immunol, 2012, 94(2): 131–141.
[27] LASH G E, PITMAN H, MORGAN H L, et al. Decidual macrophages: Key regulators of vascular remodeling in human pregnancy[J]. J Leukoc Biol, 2016, 100(2): 315–325.
[28] YANG H, XIE T, LI D, et al. Tim-3 aggravates podocyte injury in diabetic nephropathy by promoting macrophage activation via the NF-κB/TNF-α pathway[J]. Mol Metab, 2019, 23: 24–36.
[29] WU Z M, YANG H, LI M, et al. Pro-inflammatory cytokine-stimulated first trimester decidual cells enhance macrophage-induced apoptosis of extravillous trophoblasts[J]. Placenta, 2012, 33(3): 188–194.
[30] BOADA-ROMERO E, MARTINEZ J, HECKMANN B L, et al. The clearance of dead cells by efferocytosis[J]. Nat Rev Mol Cell Biol, 2020, 21(7): 398–414.
[31] WANG L, SHANG X, QI X, et al. Clinical significance of M1/M2 macrophages and related cytokines in patients with spinal tuberculosis[J]. Dis Markers, 2020, 2020: 2509454.
[32] TSAO F Y, WU M Y, CHANG Y L, et al. M1 macrophages decrease in the deciduae from normal pregnancies but not from spontaneous abortions or unexplained recurrent spontaneous abortions[J]. J Formos Med Assoc, 2018, 117(3): 204–211.
[33] SHENG Y R, HU W T, WEI C Y, et al. IL-33/ST2 axis affects the polarization and efferocytosis of decidual macrophages in early pregnancy[J]. Am J Reprod Immunol, 2018, 79(6): e12836.
[34] KIM C E, PARK H Y, WON H J, et al. Repression of PPARγ reduces the ABCG2-mediated efflux activity of M2 macrophages[J]. Int J Biochem Cell Biol, 2021, 130: 105895.
[35] TIAN F J, QIN C M, LI X C, et al. Decreased stathmin- 1 expression inhibits trophoblast proliferation and invasion and is associated with recurrent miscarriage[J]. Am J Pathol, 2015, 185(10): 2709–2721.
[36] SHANG Y, WU S, LI S, et al. Downregulation of EZH2 in trophoblasts induces decidual M1 macrophage polarization: A potential cause of recurrent spontaneous abortion[J]. Reprod Sci, 2022, 29(10): 2820–2828.
[37] DING J, YIN T, YAN N, et al. FasL on decidual macrophages mediates trophoblast apoptosis: A potential cause of recurrent miscarriage[J]. Int J Mol Med, 2019, 43(6): 2376–2386.
[38] MICHITA R T, ZAMBRA F M B, FRAGA L R, et al. The role of FAS, FAS-L, BAX, and BCL-2 gene polymorphisms in determining susceptibility to unexplained recurrent pregnancy loss[J]. J Assist Reprod Genet, 2019, 36(5): 995–1002.