摘 要:介紹了一種以C8051F高速單片機為核心的半導體激光器驅動電源的控制系統。半導體激光器的工作電流是通過恒流源及光功率反饋控制的,其中恒流源采用達林頓管作為調整管,他可調整大范圍的輸出電流,可為半導體激光器提供穩定、連續的電流,并且具有慢啟動和保護電路等功能。
關鍵詞:半導體激光器;恒流源;慢啟動;C8051F單片機
中圖分類號:TP368.1;TN249 文獻標識碼:B
文章編號:1004373X(2008)0519002
Design of Electric Power Control System by Single Chip for Semiconductor Laser
JIA Wenchao,LI Juanjuan,LIU Zengjun,CHENG Quanxi
(Electrical and Electronic Engineering College,Changchun University of Technology,Changchun,130012,China)
Abstract:A diode laser output power system controlled by microprocessor C8051F is presented.The work current of diode laser controlled by stable current source and light power feedback.This constant current source uses a high power Darlington transistor as the current control device,the value and range of the output current which can be adjusted are very large.The constant current source has protective and slow start function and so on.
Keywords:semiconductor laser diode;constant current source;slow-start circuit;C8051F single chip
半導體激光器(LD)體積小,重量輕,轉換效率高,省電,并且可以直接調制。基于他的多種優點,現已在科研、工業、軍事、醫療等領域得到了日益廣泛的應用,同時其驅動電源的問題也更加受到人們的重視。使用單片機對激光器驅動電源的程序化控制,不僅能夠有效地實現上述功能,而且可提高整機的自動化程度。同時為激光器驅動電源性能的提高和擴展提供了有利條件。
1 總體結構框圖
本系統原理如圖1所示,主要實現電流源驅動及保護、光功率反饋控制、恒溫控制、錯誤報警及鍵盤顯示等功能,整個系統由單片機控制。本系統中選用了C8051F單片機。C8051F單片機是完全集成的混合信號系統級芯片(SOC),他在一個芯片內集成了構成一個單片機數據采集或控制系統所需要的幾乎所有模擬和數字外設及其他功能部件,如本系統中用到的ADC和DAC。這些外設部件的高度集成為設計小體積、低功耗、高可靠性、高性能的單片機應用系統提供了方便,也大大降低了系統的成本。光功率及溫度采樣模擬信號經放大后由單片機內部A/D轉換為數字信號,進行運算處理,反饋控制信號經內部D/A轉換后再分別送往激光器電流源電路和溫控電路,形成光功率和溫度的閉環控制。光功率設定從鍵盤輸入,并由 LED數碼管顯示激光功率和電流等數據。
2 半導體激光器電源控制系統設計
目前,凡是高精密的恒流源,大多數都使用了集成運算放大器。其基本原理是通過負反作用,使加到比較放大器兩個輸入端的電壓相等,從而保持輸出電流恒定。并且影響恒流源輸出電流穩定性的因素可歸納為兩部分:一是構成恒流源的內部因素,包括:基準電壓、采樣電阻、放大器增益(包括調整環節)、零點漂移和噪聲電壓;二是恒流源所處的外部因素,包括:輸入電源電壓、負載電阻和環境溫度的變化。
2.1 慢啟動電路
半導體激光器往往會因為接在同一電網上的多種電器的突然開啟或者關閉而受到損壞,這主要是由于開關的閉合和開啟的瞬間會產生一個很大的沖擊電流,就是該電流致使半導體激光器損壞,介于這種情況,必須加以克服。因此,驅動電源的輸入應該設計成慢啟動電路,以防損壞,如圖2所示:左邊輸入端接穩壓后的直流電壓,右邊為輸出端。整個電路的結構可看作是在射級輸出器上添加了兩個∏型濾波網絡,分別由L1 ,C1,C2和L2,C6,C7組成。電容C5構成的C型濾波網絡及一個時間延遲網絡。慢啟動輸入電壓V在開關和閉合的瞬間產生大量的高頻成分,經過圖中的兩個∏型網絡濾出大部分的高頻分量,直流以及低頻分量則可以順利地經過。到達電阻R和C組成的時間延遲網絡, C2 和C4并聯是為了減少電解電容對高頻分量的電感效應。
2.2 恒流源電路的設計
為了使半導體激光器穩定工作,對流過激光器的電流要求非常嚴格,供電電路必須是低噪聲的穩定恒流源驅動,具體電路如圖3所示。
如圖3所示,該恒流源由運放U1和三極管T1,達林頓管Q2進行電流放大,再通過U2放大反饋,從而實現恒流輸出。TQ2以大功率達林頓管為調整管,將其接成射極輸出的形式,半導體激光器(LD)作為負載串聯在達林頓管的發射極,通過控制達林頓管的基極實現對激光器電流的控制。本設計要求電路最大能輸出3 A工作電流,這就要求推動達林頓管的基極電流也比較大,但因集成運算放大器一般工作在小電流狀態,不能直接推動達林頓管正常工作,即使勉強推動其工作也會造成集成運算放大器本身功耗過大,溫升過高,影響電路的輸出精度,所以采用小功率三極管T1推動大功率達林頓管工作。采樣電阻接在激光器下端,采樣信號經過由U2組成的同相比例放大環節放大后再接回到U1的反相輸入端,構成電流負反饋電路,達到輸出恒流的目的。
2.3 激光功率的穩定控制
光功率反饋采用外部監測光電二極管的輸出光電流,由放大器再經A/D轉換后送CPU處理,得出控制量,調整激光器的工作電流,從而進行激光功率的閉環控制。
溫度控制在本系統中采用了半導體制冷來實現,這是
一種熱電制冷器,只要控制流過溫控器電流的大小和方向,就能對激光器進行制冷或加熱,從而控制激光器的工作溫度。
2.4 保護電路
雖然慢啟動電路消除了高頻沖擊電流的危害,但不能有效地防止直流或低頻電流過載對半導體激光器的危害,因此,應當設立過載保護電路。一般可采用限流式保護電路。若長時間工作于短路的情況下,過熱仍然會導致調整管的損壞,此時可以采取截流式保護電路。過電壓保護的精度主要取決于穩壓二極管,而其工作點是隨流經穩壓管的電流和環境溫度變化的,因此,設計上必須選用穩定電壓的溫漂非常小的穩壓管。
3 軟件設計
本系統軟件采用模塊化的結構設計,自頂向下,逐步細化,利用子程序構成各模塊,如初始化模塊、鍵盤模塊、顯示模塊等。主程序流程圖如圖4所示。
在主程序流程中,系統上電復位后,開始進行各模塊初始化,然后調顯示子程序,顯示數據,再調鍵掃描子程序,若有鍵按下,則調相應的鍵功能程序,若無鍵按下,則循環調用顯示程序。
4 結 語
本文中設計的半導體激光器驅動電源的控制系統通過慢啟動電路、恒流源電路和光功率反饋電路等,解決了恒流和在工作溫度范圍內輸出功率的不穩定問題,穩定度較高。
參考文獻
[1]陳凱良,竺樹聲.恒流源及其應用電路[M].杭州:浙江科學技術出版社,1992.
[2]潘琢金,施國君.C8051Fxxx高速SOC單片機原理及應用[M].北京:北京航空航天大學出版社,2002.
作者簡介 賈文超 男,1965年出生,教授、碩士研究生導師。主要從事電氣工程、雷達、虛擬儀器、汽車電子等方面的設計與研究工作。
李娟娟 女,1982年出生,現在長春工業大學攻讀碩士學位。主要從事檢測技術與自動化裝置的研究。
注:“本文中所涉及到的圖表、注解、公式等內容請以PDF格式閱讀原文。”