999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Volumetric and Viscometric Studies of 4-Aminobutyric Acid in Aqueous Solutions of Salbutamol Sulphate at 308.15, 313.15 and 318.15 K

2009-05-15 06:17:48RajagopalandJayabalakrishnan

K. Rajagopal and S.S. Jayabalakrishnan*

?

Volumetric and Viscometric Studies of 4-Aminobutyric Acid in Aqueous Solutions of Salbutamol Sulphate at 308.15, 313.15 and 318.15 K

K. Rajagopal1and S.S. Jayabalakrishnan2,*

1Department of Physics, Government College of Engg, Tirunelveli-627007 Tamil Nadu, India2Department of Physics, P.S.R. Engg. College, Sivakasi, Tamil Nadu, India

density, standard partial molar volume, hydration number, relative viscosity,-coefficient, activation parameters

1 INTRODUCTION

Amino acids are considered as model compound instead of proteins in the presence of aqueous salt solutions to obtain thermodynamic information as the structure of proteins are highly complicated [1-4]. Some amino acids in the presence of aqueous minerals, such as sodium sulphate [2], CaCl2[5], NaCl [6], potassium thiocynate [7], are available in literature. However, the study of amino acids in the presence of aqueous salbutamol sulphate has not been reported so far. We have recently investigated some homologousa-amino acids such as glycine, L-alanine, L-valine and L-leucine in the presence of aqueous salbutamol sulphate through volumetric and viscometric studies. In this paper, we report 4-aminobutyric acid in aqueous salbutamol sulphate solutions.

2 EXPERIMENTAL

3 RESULTS AND DISCUSSION

The reported values of apparent molar volume data for the amino acids were found to be adequately represented by the linear equation [13].

Table 1 Values of density (ρ) and apparent molar volume () of the 4-amino butyric acid in aqueous salbutamol sulphate

Table 1 (Continued)

T/KmS/mol·kg-1mA/mol·kg-1Density(r)×103/kg·m-3m3·mol-1T/KmS/mol·kg-1mA/mol·kg-1Density(r)×103/kg·m-3m3·mol-1 318.150 (in water)00.99021318.150.012500.99383 0.020.9907974.7750.020.9943776.686 0.040.9913674.8080.040.9949076.707 0.060.9919374.8410.060.9954376.729 0.080.9924974.8750.080.9959676.751 0.100.9930674.8980.100.9964976.773 0.004100.992970.020700.99547 0.020.9935276.1380.020.9959977.809 0.040.9940776.1650.040.9965077.819 0.060.9946176.2070.060.9970177.833 0.080.9951476.2410.080.9975277.845 0.100.9956876.2730.100.9980377.857

Note:S, molality of salbutamol sulphate;A, molality of amino acids.

Table 2 Values of standard partial molar volume () of 4-amino butyric acid in aqueous salbutamol sulphate

① Ref. [14, 15],② Ref. [16],③ Ref. [17].

Note:S, molality of salbutamol sulphate. Parentheses indicate standard errors.

The results are given in Table 3.

Table 3 Values of standard partial molar volumes of transfer () of 4-amino butyric acid in aqueous salbutamol sulphate solutions

Note:S, molality of salbutamol sulphate.

Table 4 Values of hydration number of 4-amino butyric acid in aqueous salbutamol sulphate solutions

The transfer volumes of the 4-aminobutyric acid may also be expressed by the McMillan Mayer theory [30] of solutions, which permits the formal separation of the effects due to interactions between the pairs of the solute molecules and those due to interactions between three or more solute molecules by the following equation.

where A stands for the amino acids and S stands for salbutamol sulphate.ASandASSare the pair and triplet volumetric interaction parameters. Using the above equation volumetric interaction parameters were estimated and given in Table 5.

TheASandASSvalues are positive and negative respectively. The large positiveASvalues suggest the domination of pair interactions for the 4-aminobutyric acid over triplet volumetric interaction parameters. Similar reports are available in the literature by Banipal[31].

Table 5 Values of pair and triplet interaction coefficients VAS and VASS of 4-amino butyric acid in aqueous salbutamol sulphate solutions

The coefficients,andhave been determined and Eq. (5) has the following forms for the amino acids reported in this work.

The relative viscositiesrof studied amino acid in water and in cosolute solutions were calculated using the following equation and are summarized in Table 6.

whereand0are the viscosities of the solution and solvent.

Thecoefficients were evaluated by fitting thervalues to the Jones-Dole equation by a least squares method [35] as follows

whereis the molarity (calculated from molality data). The values ofcoefficients are summarized in Table 7.

Table 6 Values of relative viscosity of the 4-amino butyric acid in aqueous salbutamol sulphate

Table 6 (Continued)

T/KmS/mol·kg-1Molarity (C)/mol·dm-3Relativeviscosity (ηr)T/KmS/mol·kg-1Molarity (C)/mol·dm-3Relativeviscosity (ηr) 313.150.01250.0200321.005545318.150.00410.0198791.004727 0.0399831.0117590.0396881.010262 0.0598931.0182440.0594571.016459 0.0797221.0242650.0791561.022586 0.0995121.0308240.0987861.029156 0.02070.0201411.0057100.01250.0199951.005171 0.0402201.0122110.0399091.010778 0.0602461.0188450.0597821.017257 0.0802091.0248280.0795741.023160 0.1001111.0312740.0993261.030009 318.150 (in water)0.0197751.0037470.02070.0201071.005359 0.0394921.0095580.0401511.011220 0.0591501.0138970.0601421.017726 0.0787501.0215570.0800721.023737 0.0982931.0278940.0999381.030464

Note:S, molality of salbutamol sulphate.

Table 7 Values of viscosity B coefficients of 4-amino butyric acid in water and in aqueous salbutamol sulphate

①Ref. [7],② Ref. [36].

Note:S, molality of salbutamol sulphate. Parentheses indicates standard errors.

The literature-values for the 4-aminobutyric acid in water are also given in Table 7 for comparison. There is a close agreement onvalues reported in this work with literature values for AA validates our viscosity data.

Table 8 Values of activation free energy of solvent?, solute??and average molar volume of solvent?, solute??of aqueous salbutamol sulphate solutions

Table 9 Values of thermodynamic activation parameter transfer??of 4-amino butyric acid from ground state to transition state in aqueous salbutamol sulphate solutions

Table 10 Values of activation entropy T??(kJ·mol-1) and activation enthalpy??(kJ·mol-1) of 4-amino butyric acid in aqueous salbutamol sulphate solutions

4 CONCLUSIONS

NOMENCLATURE

viscosity-coefficient, dm3·mol-1

molarity of amino acid, mol·dm-3

Planck constant

molar mass of amino acid

molality of amino acid

AAvagadro’s number

Hhydration number

universal gas constant (8.314 J·mol-1·K-1)

vcoefficient in Eq. (2)

temperature, K

flow time of solution in viscometer

rrelative viscosity

density, kg·m-3

Superscripts

0 binary solvent (in aqueous salbutamol sulphate)

Subscripts

1 binary solvent property

2 solute property

1 Ali, A., Hyder, S., Sabir, S., Chand, D., Nain, A.K., “Volumetric, viscometric and refractive index behavior ofa-amino acids and their groups contribution in aqueous D-glucose solutions at different temperatures”,.., 38, 136-143 (2006).

2 Wadi, R.K., Ramasami, P., “Partial molar volumes and adiabatic compressibilities of transfer of glycine and DL-alanine from water to aqueous sodium sulphate at 288.15, 298.15 and 308.15 K”,....., 93, 243-247 (1997).

3 Yan, Z., Wang, J., Kong, W., Lu, J., “Effects of temperature on volumetric and viscosity properties of somea-amino acids in aqueous calcium chloride solutions”,., 215, 143-150 (2004).

4 Banipal, T.S., Sehgal, G., “Partial molar adiabatic compressibility of transfer of some amino acids from water to aqueous sodium chloride and aqueous glucose solutions”,., 265, 175-183 (1995).

5 Yan, Z., Wang, J., Kong, W., Lu, J., “Effect of temperature on volumetric and viscosity properties of somea-amino acids in aqueous calcium chloride solutions”,., 215, 130-143 (2004).

6 Soto, A., Arce, A., Kheshkbarchi, M.K., “Experimental data and modeling of apparent molar volumes, isentropic compressibilities and refractive indices in aqueous solutions of glycine?+?NaCl”,.., 74, 165-173 (1998).

7 Wadi, R.K., Goyal, R.K., “Densities, viscosity and applications of transition-state theory for water and potassium thiocyanate?+?amino acid solutions at 288.15-308.15 K”,...., 37, 377-386 (1992).

8 Kharakoz, D.P., “Volumetric properties of proteins and their analogues in diluted water solutions partial molar volumes of amino acids at 15-55°C”,.., 34, 115-125 (1989).

9 Kharakoz, D.P., “Partial volumes and compressibilities of extended polypeptide chains in aqueous solutions additivity scheme and implications of protein unfolding at normal and high pressure”,-., 36, 10276-10285 (1997).

10 Sakurai, M., Nakumaura, T., Takenaka, N., “Apparent molar volumes and apparent molar adiabatic compressions of water in some alcohols”,...., 67, 352 (1994).

11 Kikuchi, M., Sakurai, M., Nitta, N., “Partial molar volumes and isentropic compressibilities of-acetyl amino acid amides in dilute aqueous solutions at (5,15,25,35 and 45)°C”,..., 41, 1439-1445 (1996).

12 Pal, A., Kumar, S., “Volumetric and viscometric studies of glycine in binary aqueous solutions of sucrose at different temperatures”,..., 44A, 469-475 (2005).

13 Ren, X., Hu, X., Lin, R., Zong, H., “Apparent molar volumes of L-glycine, L-alanine and L-serine in water?+?dimethyl formamide mixtures at 298.15 K”,..., 43, 700-702 (1998).

14 Islam, M.N., Wadi, R.K., “Temperature dependence of apparent molar volumes and viscosity coefficients of amino acids in aqueous sodium sulphate solutions from 15 to 35°C”,..., 41, 533-544 (2003).

15 Wadi, R.K., Goyal, R.K., “Temperature dependence of apparent molar volume and viscosity coefficients of amino acids in aqueous potassium thiocyanate solutions from 15 to 35°C”,.., 21, 163-170 (1992).

16 Bhattaacharyya, M.M., Sengupta, M., “Ion-solvent interaction of amino acids: IV. Apparent molar volumes of amino acids in natural acidic and alkaline media at different temperatures”,..., 62, 959-964 (1985).

17 Chalikian, T.V., Sarvazyan, A.V., Breslauer, K.J., “Partial molar volumes expansibilities and compressibilities ofa,w-amino carboxycylic acids in aqueous solutions between 18 and 55°C”,..., 97, 13017-13026 (1993).

18 Beli bagli, K., Ayranci, E., “Viscosities and apparent molar volumes of some amino acids in water and in 6M guanidine hydrochloride at 25°C”,.., 19, 867-882 (1990).

19 Friedman, H., Krishnan, C.V., Thermodynamics of Ion Hydration, in: Water—A comprehensive treatise, Plenum press, New York, Vol. 3 (Chapter 1), 1-118 (1973).

20 Bhat, R., Kishore, N., Ahluwalia, J.C., “Thermodynamic studies of transfer of some amino acids and peptides from water to aqueous glucose and sucrose solutions at 298.15 K”,..., 84 (8), 2651-2665 (1988).

22 Liu, Q., Hu, X., Lin, R., Sang, W., Li, S., “Limiting partial molar volumes of glycine L-alanine and L-serine in ethylene glycol?+?water mixtures at 298.15 K”,..., 46, 522-525 (2001).

25 Franks, F., Quickenden, M.A., Reig, D.S., Watson, B., “Calorimetric and volumetric studies of dilute aqueous of cycle ether derivatives”,...., 66, 582-589 (1970).

26 Millero, F.J., Surdo, A.L., Shin, C., “The apparent molar volumes and adiabatic compressibilities of aqueous amino acids at 25°C”,..., 82, 784-792 (1978).

27 Pal, A., Kumar, K., “Volumetric and ultrasonic studies of some amino acids in binary aqueous solutions of MgCl2·6H2O at 298.15 K”,..., 121, 148-155 (2005).

28 Millero, F.J, Leppa, G.K., Lepple, F.K., Hoff, E.V., “Isothermal compressibility of aqueous sodium chloride, magnesium chloride, sodium sulphate and magnesium sulphate solutions from 0 to 45°C at 1 atm”,..., 78, 1636-1643 (1974).

29 Romero, C.M., Negrete, F., “Effect of temperature on partial molar volumes and viscosities of aqueous solutions ofa-DL-aminobutyric and DL-norvaline and DL-norLeucine”,..., 42, 261-267 (2004).

30 McMillan, W.G., Mayer, J.E., “The statistical thermodynamics of multi component system”,..., 13, 276-305 (1945)

31 Banipal, T.S., Kaur, D., Banipal, P.K., “Effect of magnesium acetate on the volumetric and transport behaviour of some amino acids in aqueous solutions at 298.15 K”,.., 38, 1214-1226 (2006).

32 Hepler, L., “Thermal expansion and structure in water and aqueous solutions”,..., 47, 4613-4617 (1969).

33 Pal, A., Kumar, S., “Viscometric and volumetric studies of some amino acids in binary aqueous solutions of urea at various temperatures”,..., 109, 23-31 (2004).

34 Lark, B.S., Patyar, P., Banipal, T.S., Kishore, N., “Densities, parial molar volumes and heat capacities of glycine, L-alanine and L-leucine in aqueous magnesium chloride solutions at different temperatures”,...., 49, 553-565 (2004).

35 Jones, G., Dole, M., “The viscosity of aqueous solutions of strong electrolytes with special reference to barium chloride”,...., 51, 2950-2964 (1929).

36 Bhattacharyya, M.M., Sengupta, M., “Ion solvent interaction of amino acids; part II. Amino acids in aqueous solutions in the cationic, anionic and zwitterionic forms”,... (..), 133, 79-91 (1982).

37 Jenkins, H.D.B., Marcus, Y., “Viscosity-coefficients of ions in solutions”,.. ,95, 2695-2724 (1995).

38 Bai, T.C., Yan, G.B., “Viscosity-coefficients and activation parameters for viscous flow of a solution of heptanedioic acid in aqueous sucrose solutions”,, 338, 2921-2927 (2003).

39 Tsangins, J.M., Martin, R.B., “Viscosities of aqueous solutions of dipolar ions”,..., 112, 267-272 (1965).

40 Kaminsky, M., “Densities and apparent molal volumes of some aqueous rare earth solutions at 25°C”,.., 24, 171 (1957).

41 Sharma, T.S., Ahluwalia, J.C., “Experimental studies on the structure of aqueous solutions of hydrophobic solutes”,..., 2, 203-232 (1973).

42 Feakins, D., Bates, F.M., Waghorne, W.E., Lawrence, K.G., “Relative viscosities and quasi thermodynamics of solutions of-butyl alcohol in the methanol water system; a different view of the alkyl-water interaction”,...., 89, 3381-3388 (1993).

43 Glasstone, S., Laidler, K., Eyring, H., The Theory of Rate Processes, McGraw-hill, New York, 477 (1941).

44 Mishra, A.P., Gautam, S.K., “Viscometric and volumetric studies of some transition metal chlorides in glycine water solutions”,.., 40, 100-104 (2001).

45 Yan, Z., Wang, J., Lu, J., “Viscosity behaviour of somea-amino acids and their groups in water-sodium acetate mixtures”,.., 99, 199-207 (2002).

2008-11-27,

2009-02-18.

* To whom correspondence should be addressed. E-mail: krishnanpsr@yahoo.com

主站蜘蛛池模板: 国产精选小视频在线观看| 亚洲无限乱码一二三四区| 亚洲福利网址| 四虎国产永久在线观看| 国产亚洲男人的天堂在线观看| 巨熟乳波霸若妻中文观看免费| 日韩欧美91| 精品无码日韩国产不卡av | 亚洲一区免费看| 这里只有精品国产| 久久永久精品免费视频| 91国内外精品自在线播放| 日韩中文欧美| 国产精品开放后亚洲| 久久精品国产精品一区二区| 在线观看精品自拍视频| 一级片免费网站| 国产成人91精品| 国产成人精品综合| 亚洲国产成人无码AV在线影院L| 欧美亚洲日韩不卡在线在线观看| 久久国产亚洲偷自| 国产香蕉国产精品偷在线观看| 国产午夜人做人免费视频| 国产人成网线在线播放va| 亚洲一区二区日韩欧美gif| 国产网友愉拍精品| 亚洲无码高清一区| 91视频国产高清| 999国产精品永久免费视频精品久久| 亚洲大尺度在线| 亚洲人人视频| 日本免费新一区视频| 国产综合日韩另类一区二区| yy6080理论大片一级久久| 亚洲无码高清免费视频亚洲| a级毛片网| 日韩AV手机在线观看蜜芽| 欧美97色| 婷婷激情亚洲| 四虎免费视频网站| 最新国语自产精品视频在| 亚洲综合第一区| 亚洲黄网在线| 国产在线观看一区精品| 人禽伦免费交视频网页播放| 色综合天天娱乐综合网| 国产日韩AV高潮在线| 日韩麻豆小视频| 91色老久久精品偷偷蜜臀| 亚洲福利一区二区三区| 亚洲人成人无码www| 亚洲精品老司机| 中文字幕精品一区二区三区视频| 国产无码制服丝袜| 国产一级视频久久| 又粗又大又爽又紧免费视频| 亚洲精品制服丝袜二区| 亚洲精品你懂的| av天堂最新版在线| 999国内精品视频免费| 91麻豆精品视频| 亚洲 成人国产| 久久91精品牛牛| 国产区在线看| 一级一级特黄女人精品毛片| 国产男女XX00免费观看| 成人午夜网址| 麻豆精品在线播放| 人妻丰满熟妇αv无码| 欧美成人怡春院在线激情| 伊人查蕉在线观看国产精品| 美女被狂躁www在线观看| 亚洲欧美激情另类| 97影院午夜在线观看视频| 国产成人精品一区二区不卡| 麻豆国产在线观看一区二区| 四虎永久在线精品影院| 波多野结衣在线se| 人妻中文字幕无码久久一区| 亚洲高清无在码在线无弹窗| 亚洲中文字幕97久久精品少妇|