999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

咪唑基離子液體的物理化學(xué)性質(zhì)估算及預(yù)測

2010-12-12 02:41:34劉青山譚志誠WELZBIERMANNUrs
物理化學(xué)學(xué)報(bào) 2010年6期
關(guān)鍵詞:實(shí)驗(yàn)室化學(xué)物理

劉青山 楊 淼 譚志誠,2,* WELZ-BIERMANN Urs,*

(1中國科學(xué)院大連化學(xué)物理研究所,中國離子液體實(shí)驗(yàn)室,遼寧大連 116023; 2中國科學(xué)院大連化學(xué)物理研究所,熱化學(xué)實(shí)驗(yàn)室,遼寧大連 116023)

ILs as organic salts,often exhibit interesting properties,such as low melting points,good solvation properties,and nonvolatility,which are required both by industrial and scientific communities for their broad application range as electrolytes in batteries and supercapacitors[1-2],reaction media in nanoscience[3], physical chemistry[4-5]and many other areas.Therefore,the data of physicochemical properties of ILs are fundamental for their future application and valuable for an insight into the origins of their unique behavior.Recently,more and more publications reported the experimental physicochemical properties of various ILs[6-15].Although there is a significant amount of data related to imidazolium-based ILs,properties of homologue of[Cnmim] [EtSO4],[Cnmim][OcSO4],and[Cnmim][NTf2](n=1-6)covered inthis publication are still limited[16-17].In this regard,we estimated various physicochemical properties of[C2mim][EtSO4],[C4mim] [OcSO4],and[C2mim][NTf2]by using their experimental density and surface tension data.In the next step,the physicochemical properties of their homologues[Cnmim][EtSO4],[Cnmim][OcSO4], and[Cnmim][NTf2](n=1-6)were predicted from the estimated values of their molecular volumes and parachors.In the present paper,the ionic liquid cations are 1-alkyl-3-methylimidazolium ([Cnmim]+),tetra-alkyl ammonium([TAA]+),N-octyl-3-methylpyridinium([m3opy]+);the anions of the ILs are ethylsulfate ([EtSO4]-),octylsulfate([OcSO4]-),bis(trifluoromethylsulfony) imide([NTf2]-),and tetrafluoroborate([BF4]-).

1 Volumetric,entropy and lattice energy

The molecular volume,Vm,can be calculated from experimental density using the following equation: where M is molar mass,ρ is density,and N is Avogadro′s constant.

According to Glasser′s theory[18],the standard molar entropy, S?,could be estimated from the following equation:

The lattice energy,UPOT,was estimated according to the following equation[18]:

The contribution methylene(—CH2—)group to the molecular volume is 0.0272 nm3for[Cnmim][BF4][18],0.0282 nm3for [Cnmim][NTf2][18],0.0270 nm3for[Cnmim][AlCl4][15],and 0.0278 nm3for[Cnmim][Ala][14].Due to the similar values of the contribution of per—CH2—to the molecular volume,the group of methylene in the alkyl chains of the imidazolium-based ILs could be considered to have the similar chemical environment.Hense, the mean value of the contribution can be calculated to be 0.0275 nm3,the physicochemical properties(density,standard entropy, latticeenergy)of the homologues of[Cnmim][EtSO4]and[Cnmim] [OcSO4](n=1-6)could be predicted.Using the value 0.0282 nm3for the contribution of per—CH2—to the molecular volume for the homologues of[Cnmim][NTf2](n=1-6)[18],the physicochemical properties of all IL homologues can be predicted.The calculated density value(1.4381 g·cm-3)for[C4mim][NTf2]is in good agreement with the experimental values(1.4366 g·cm-3[6], 1.43410 and 1.43573 g·cm-3[19]).The predicted density value (1.0881 g·cm-3)for[C2mim][OcSO4]is also in good agreement with the experimental value of 1.0942 g·cm-3[20].

All of these estimated and predicted physicochemical property data are listed in Tables 1-3.

Based on the plots of S?against the number of the carbons,n, in the alkyl chain of the ILs(see Fig.1),the contribution of per methylene group to S?was calculated to be 35.1 J·K-1·mol-1for [Cnmim][NTf2],34.3 J·K-1·mol-1for[Cnmim][EtSO4],and 34.3 J·K-1·mol-1for[Cnmim][OcSO4].The above calculated values are in good agreement with the literature values of 35.1 J·K-1·mol-1for[Cnmim][NTf2][18],33.9 J·K-1·mol-1for[Cnmim][BF4][18],33.7 J·K-1·mol-1for[Cnmim][AlCl4][15],and 34.6 J·K-1·mol-1for [Cnmim][Ala][14].According to these various values for the contribution of per methylene group to the standard molar entropy in the homologue series with different anions,it could be concluded that these contributions are relatively similar for all imidazolium-based ILs.

2 Parachors and molar enthalpy of vaporization

The parachor,P,was estimated from the following equation[21]:

where γ is the surface tension.

According to literature[15],the contribution of per methylene (—CH2—)group to parachor is 31.1.The values of parachors for the homologue series of the imidazolium-based ILs[Cnmim] [EtSO4],[Cnmim][OcSO4],and[Cnmim][NTf2](n=1-6)were predicted.

The values of molar enthalpies of vaporization were estimated in terms of Kabo′s empirical equation[22]:

where V is molar volume.

According to Eq.(4),the surface tension can be calculated from predicted density and parachor data.The calculated value(31.71 mJ·m-2)for the surface tension of[C4mim][NTf2]is in good agr-eement with the experimental value(32.80 mJ·m-2)[6].The molar enthalpy of vaporization,,then can be obtained based on the predicted density and surface tension data.

Table 1 Estimated and predicted values of physicochemical properties of[Cnmim][EtSO4](n=1-6)at 298.15 K

Table 2 Estimated and predicted values of physicochemical properties of[Cnmim][NTf2](n=1-6)at 298.15 K

Table 3 Estimated and predicted values of the physicochemical properties of[Cnmim][OcSO4](n=1-6)at 298.15 K

All of these data are listed in Tables 1-4.

Fig.1 Plots of S?against the number of the carbon(n)in the alkyl chain of the ILs at 298.15 K(a)S?=570.7+34.27n,R=0.9999 for[Cnmim][OcSO4]; (b)S?=492.7+35.14n,R=0.9999 for[Cnmim][NTf2]; (c)S?=355.2+34.29n,R=0.9999 for[Cnmim][EtSO4]

The plots of density,ρ,and surface tension,γ,against the number of carbon,n,in alkyl chain of ILs at 298.15 K are shown in Figs.2 and 3.

FromtheFigs.2and3,itcanbeseenthatasfordensity:[Cnmim] [NTf2]>[Cnmim][EtSO4]>[Cnmim][OcSO4]and as for surface tension:[Cnmim][EtSO4]>[Cnmim][NTf2]>[Cnmim][OcSO4].

3 Interstice model theory

According to the interstice model[23-24],the interstice volume,v, could be estimated by classical statistical mechanics:

where kBis the Boltzmann constant,T is the thermodynamic temperature.

The molar volume of ionic liquids,V,consists of the inherent volume,Vi,and the volume of the interstice;whereas the molar volume of the interstice is Σv=2Nv:

If the expansion volume of IL only results from the expansion of the interstice when the temperature increases,then,the thermal expansion coefficient,α,can be predicted from the interstice model:

Table 4 Values of the molar enthalpies of vaporization of ILs at 298.15 K

Fig.2 Plots of density(ρ)against n(n=1-6)at 298.15 K

All data obtained by this estimation and prediction are listed in Tables 1-3.

The prediction and estimation values of the thermalexpansion coefficients in Tables 1-3 are in good agreement with experimental values.It also can be noticed that the values of interstice fractions,Σv/V,differentiate only about 10%-15%for all ILs studied in the present article and these values are in good agreement with the values of volume expansion in the process from solid to liquid state for the majority of materials.Therefore the interstice model is applicable and the interstice model theory can be used to calculate the thermal expansion coefficient of imidazolium-based ILs.

4 Prediction of enthalpy of vaporization

Recently,Verevkin[25]has published an article titled“Predicting enthalpy of vaporization of ionic liquids:a simple rule for a complex property”,in which he predicted molar enthalpy of vaporization of ILs by a simple rule in case of lack of experimental data.He proposed the following simple rule:

where ΔHiis the contribution of the ith element,niis the number of the element of the ith type in ILs,ΔHjis the contribution of the jth structural correction and njis the number of the element of the jth structural correction in ILs.The parameters[25]for predicting the molar enthalpy of vaporization of ILs are listed in Table 5.

Verevkin pointed out that“a special structural correction couldbe also necessary for quaternary ammonium based ILs”[25].Herein,the structure of the quaternary ammonium cation is regarded to be the ring of imidazolium cation,therefore,its structural correction parameter is ΔH=27.1 kJ·mol-1.The predicted data are listed in Table 4.From this table,the values of the molar enthalpies of vaporization,predicted by Eq.(9)are in good agreementwiththe values estimated by Eq.(5)except for[C4mim] [OcSO4].This is because that the Eq.(5)is valid mainly for ILs [Cnmim][NTf2].Indeed,the assumption to consider the quaternary ammonium cation as a ring system needs confirmation.

Table 5 Parameters for predicting the enthalpy of vaporization of ILs at 298.15 K[25]

Fig.3 Plotsofsurfacetension(γ)againstn(n=1-6)at298.15K

5 Conclusions

The physicochemical properties(molecular volume,molar volume,parachor,interstice volume,interstice fraction,thermal expansion coefficient,standard entropy,lattice energy,and molar enthalpy of vaporization)of[C2mim][EtSO4],[C4mim][OcSO4], and[C2mim][NTf2]were estimated by using their experimental data of density and surface tension.Based on the estimated data of the molecular volume and parachor,the physicochemical properties(density,surface tension and all of the properties mentioned above)for their homologue series[Cnmim][EtSO4], [Cnmim][OcSO4],and[Cnmim][NTf2](n=1-6)were predicted.

We compared the values of molar enthalpies of vaporization for[C2mim][EtSO4],[C4mim][OcSO4],[C2mim][NTf2],[C4mim] [NTf2],[N4111][NTf2],[N8881][NTf2],and[m3opy][BF4],estimated by Kabo′s empirical equation with those predicted by Verevkin′s simple rule,and found that the values calculated in terms of the two approaches are in good agreement with each other.Hence,it is suggested that the molar enthalpy of vaporization of ILs could be estimated in terms of Verevkin′s simple rule when the experimental data are not available.

1 Tsunashima,K.;Sugiya,M.Electrochem.Commun.,2007,9: 2353

2 Seki,S.;Kobayashi,Y.;Miyashiro,H.;Ohno,Y.;Usami,A.;Mita, Y.;Watanabe,M.;Terada,N.Chem.Commun.,2006:544

3 Itoh,H.;Naka,K.;Chujo,Y.J.Am.Chem.Soc.,2004,126:3026

4 Du,Z.;Yu,Y.L.;Wang,J.H.Chem.Eur.J.,2007,13:2130

5 Endres,F.;Abedin,S.Z.E.Phys.Chem.Chem.Phys.,2006,8: 2101

6 Wandschneider,A.;Lehmann,J.K.;Heintz,A.J.Chem.Eng. Data,2008,53:596

7 Bandres,I.;Giner,B.;Artigas,H.;Lafuente,C.;Royo,F.M. J.Chem.Eng.Data,2009,54:236

8 Sun,J.;Forsyth,M.;MacFarlane,D.R.J.Phys.Chem.B,1998, 102:8858

9 Tokuda,H.;Hayamizu,K.;Ishii,K.;Susan,M.A.B.H.; Watanabe,M.J.Phys.Chem.B,2004,108:16593

10 Tokuda,H.;Ishii,K.;Susan,M.A.B.H.;Tsuzuki,S.;Hayamizu, K.;Watanabe,M.J.Phys.Chem.B,2006,110:2833

11 Bandrés,I.;Giner,B.;Artigas,H.;Royo,F.M.;Lafuente,C. J.Phys.Chem.B,2008,112:3077

12 Tong,J.;Liu,Q.S.;Guan,W.;Yang,J.Z.J.Phys.Chem.B,2007, 111:3197

13 Tong,J.;Liu,Q.S.;Zhang,P.;Yang,J.Z.J.Chem.Eng.Data, 2007,52:1497

14 Fang,D.W.;Guan,W.;Tong,J.;Wang,Z.W.;Yang,J.Z.J.Phys. Chem.B,2008,112:7499

15 Tong,J.;Liu,Q.S.;Xu,W.G.;Fang,D.W.;Yang,J.Z.J.Phys. Chem.B,2008,112:4381

16 Fernández,A.;Torrecilla,J.S.;García,J.;Rodríguez,F.J.Chem. Eng.Data,2007,52:1979

17 Fernández,A.;García,J.;Torrecilla,J.S.;Oliet,M.;Rodríguez,F. J.Chem.Eng.Data,2008,53:1518

18 Glasser,L.Thermochim.Acta,2004,421:87

19 Troncoso,J.;Cerdeirina,C.A.;Sanmamed,Y.A.;Romani,L.; Rebelo,L.P.N.J.Chem.Eng.Data,2006,51:1856

20 Hasse,B.;Lehmann,J.;Assenbaum,D.;Wasserscheid,P.; Leipertz,A.;Froba,A.P.J.Chem.Eng.Data,2009,54:2576

21 Deetlefs,M.;Seddon,K.R.;Shara,M.Phys.Chem.Chem.Phys., 2006,8:642

22 Zaitsau,D.H.;Kabo,G.J.;Strechan,A.A.;Paulechka,Y.U.; Tschersich,A.;Verevkin,S.P.;Heintz,A.J.Phys.Chem.A,2006, 110:7303

23 Yang,J.Z.;Lu,X.M.;Gui,J.S.;Xu,W.G.Green Chem.,2004, 6:541

24 Zhang,Q.G.;Yang,J.Z.;Lu,X.M.;Gui,J.S.;Huang,M.Fluid Phase Equilib.,2004,226:207

25 Verevkin,S.P.Angew.Chem.Int.Edit.,2008,47:5071

猜你喜歡
實(shí)驗(yàn)室化學(xué)物理
只因是物理
井岡教育(2022年2期)2022-10-14 03:11:44
處處留心皆物理
電競實(shí)驗(yàn)室
電子競技(2019年22期)2019-03-07 05:17:26
電競實(shí)驗(yàn)室
電子競技(2019年21期)2019-02-24 06:55:52
電競實(shí)驗(yàn)室
電子競技(2019年20期)2019-02-24 06:55:35
電競實(shí)驗(yàn)室
電子競技(2019年19期)2019-01-16 05:36:09
奇妙的化學(xué)
三腳插頭上的物理知識(shí)
奇妙的化學(xué)
奇妙的化學(xué)
主站蜘蛛池模板: 国产乱人激情H在线观看| 欧美国产日韩一区二区三区精品影视| 国产成人亚洲欧美激情| 日本精品αv中文字幕| 国产高清色视频免费看的网址| 99久久这里只精品麻豆| 欧美高清国产| 手机成人午夜在线视频| 不卡网亚洲无码| 曰AV在线无码| 一级毛片在线直接观看| 亚洲中文字幕精品| 久久久久九九精品影院| 日韩国产精品无码一区二区三区| 一级爆乳无码av| 国产www网站| 天天综合网在线| 三上悠亚在线精品二区| 久久精品人妻中文系列| 在线观看免费AV网| 尤物亚洲最大AV无码网站| 九九久久精品免费观看| 伊人福利视频| www欧美在线观看| 成人精品视频一区二区在线| 亚洲精品欧美重口| 久久精品丝袜| 又粗又大又爽又紧免费视频| 欧美一级高清视频在线播放| 色135综合网| 性欧美在线| 婷婷亚洲综合五月天在线| 99伊人精品| 国产一区二区三区在线观看视频 | 精品午夜国产福利观看| 91精品啪在线观看国产| 欧美精品成人| 亚洲第一天堂无码专区| 久久免费视频播放| 亚洲欧美色中文字幕| 91美女视频在线| 三级视频中文字幕| 欧美日韩第二页| 中文无码精品A∨在线观看不卡 | 在线另类稀缺国产呦| 久久男人资源站| 国产丝袜第一页| 国产黄在线观看| 欧美精品啪啪| 欧美特黄一免在线观看| 日本欧美中文字幕精品亚洲| 在线观看国产精品一区| 国产欧美精品午夜在线播放| 色综合天天娱乐综合网| 日韩精品久久久久久久电影蜜臀| 一本二本三本不卡无码| 成年人免费国产视频| 久久毛片基地| 国产啪在线| 国产一级裸网站| 国产精品无码AV中文| 国产欧美日韩视频一区二区三区| 国产亚洲现在一区二区中文| 国产成人三级| 国产女人喷水视频| 国产乱人视频免费观看| 亚洲天堂伊人| 国产成人精品一区二区三区| 国产在线自乱拍播放| 国产视频大全| 手机在线国产精品| 亚洲欧美成人影院| 日本午夜网站| 中文字幕波多野不卡一区| 亚洲中文精品久久久久久不卡| 人妻无码中文字幕一区二区三区| 女人18毛片一级毛片在线 | 日韩第一页在线| 色哟哟国产精品一区二区| 国产美女无遮挡免费视频| 欧美成人综合在线| 露脸国产精品自产在线播|