萬蘇文,陶 莉,劉永利
WAN Su-wen1,TAO Li2,LIU Yong-li1
(1. 淮安信息職業(yè)技術學院,淮安 223001;2. 淮陰工學院,淮安 223001)
曲柄連桿機構是內(nèi)燃機實現(xiàn)工作循環(huán)、完成能量轉換的傳動機構,既是用來傳遞力和改變運動方式的最關鍵組成部分之一,也是構成往復運動活塞式內(nèi)燃機的基礎機構組成。柴油機曲柄連桿機構由活塞組、連桿組和曲軸飛輪組等三大部件組成。其中活塞組包括活塞、氣環(huán)、油環(huán)、活塞銷、銷擋圈等零件,沿氣缸做往復直線運動;連桿組由連桿及附件組成,做平面運動;曲軸飛輪組包括曲軸、飛輪等,繞曲軸軸線做旋轉運動,具體組成如圖1所示。由于該機構是在高溫高壓下作變速運動,其工作過程中的受力情況非常復雜,其中有作用在活塞頂部的氣體作用力、運動零件的質(zhì)量慣性力與離心力、各摩擦表面的摩擦力以及外界阻力等,因此在分析和設計內(nèi)燃機連桿機構的結構強度、剛度等方面帶來了巨大挑戰(zhàn),傳統(tǒng)的分析方法是采用解析法或圖解法,人工計算量大、耗時、易出錯和不直觀,隨著Pro/E和MATLAB等軟件的發(fā)展,現(xiàn)在可以利用軟件工具進行機構建模與分析,從而能夠快速、精確、直觀地反映機構的運動和受力情況。本文以MATLAB為研究工具,用閉環(huán)矢量二介導數(shù)法建立曲柄滑塊機構的數(shù)學模型,應用Simulink模塊建立仿真模型;同時以Pro/ENGINEER為研究工具,創(chuàng)建實體零件及其裝配模型,如圖2所示為單缸內(nèi)燃機的Pro/E結構圖。同時推導出活塞對氣缸的側向力、活塞的慣性力、連桿對活塞的作用力以及內(nèi)燃機的轉矩等方程式。這樣的研究方法可以應用于各種機構的運動分析,對內(nèi)燃機活塞環(huán)和氣缸套摩擦力大、使用壽命低、發(fā)動機噪音大、燃油熱效率不高等問題也具有廣泛的意義。

圖1 柴油機曲柄連桿機構組成

圖2 單缸內(nèi)燃機PRO/E結構圖
曲柄連桿機構向量模型如圖3所示。其中滑塊的位移r1;曲柄長度r2、轉角θ2;連桿長度r3、轉角θ3;將曲柄連桿機構的閉環(huán)矢量在坐標軸上投影為:

設曲柄長度r2=50mm,連桿長度r3=150mm, 曲柄以角速度ω2=188.5rad/s(n =1800r/min)勻速轉動,代入消元后求解得(2)式。

程序:function r=tl0(t)
r=sqrt (20000+2500*cos (188.5*t)^2) + 50*cos(188.5*t)
fplot (’tl0’,[0,0.10])
將(2)式對時間t求導數(shù),得到曲柄連桿機構的速度方程如下:


即可得到滑塊位移的仿真曲線圖, 如圖3所示。同理也可以得到滑塊速度仿真曲線圖,如圖4所示,滑塊加速度仿真曲線圖,如圖5所示,連桿轉角仿真曲線圖,如圖6所示。

圖3 曲柄連桿機構向量模型

圖4 曲柄連桿機構活塞位移

圖5 活塞往復運動速度
Simulink仿真工具的算法主要是數(shù)值積分,所以在仿真之前必須為積分器建立適當?shù)某跏紬l件。否則將會導致仿真失敗。已知曲柄滑塊機構中曲柄長度r2=50mm,連桿r3=150mm, 曲柄以角速度ω2=188.5 rad/s勻速轉動,α2= 0。利用速度方程可以計算出t=0起始時刻機構中各構件的位置和速度解分別為:θ2=0,θ3= 0,r1=200mm,ω3=-62.833rad/s。

圖6 活塞往復運動加速度
根據(jù)積分方程的初始條件和加速度矢量方程,建立Simulink仿真模塊如圖7所示, 其中以曲柄的角速度ω2和角加速度α2作為輸入,各構件瞬時位置、角速度及滑塊每個時刻的位移、速度和加速度作為輸出,并以向量的形式存儲在工作空間simout中。其中仿真模塊符號對應關系如下:

圖7 Simulink仿真模塊
在對機械進行受力分析時,對于低速機構常由于慣性力小而略去不計,只作靜力分析;但對于高速及重型機械,因其慣性力很大(常超過外力),故必須對它作動態(tài)靜力分析[5](即將慣性力視為一般外力加在相應構件上,在按靜力分析的方法進行分析)。在車用柴油機曲軸連桿機構的運動過程中,發(fā)動機的最高轉速可達4000~6000r/min,活塞每分鐘要要行走幾十個行程,線速度非常快,因此引起的慣性力也非常大[6]。活塞頂部在作功行程時,承受著燃氣帶沖擊性的高壓力,對于柴油機活塞,其最大值可達6~9 MPa。再加上高速運動而產(chǎn)生的慣性力,使得活塞對氣缸壁的側壓力非常大,加速活塞和氣缸套的磨損,也容易引起活塞變形。車用柴油機曲軸連桿機構各構件產(chǎn)生的慣性力,不僅與各構件的質(zhì)量 ,繞過質(zhì)心軸的轉動慣量 ,質(zhì)心 的加速度 及構件的角加速度 等有關,且與機構的運動形式有關,下面以圖5為例來說明各構件的慣性力的計算方法:

圖8 各構件的慣性力
連桿BC由于作平面復合運動且平行于運動平面的對稱面,其慣性力系可簡化為一個加在質(zhì)心 S2上的慣性力FI2和一個慣性力偶矩MI2,即FI2=-m2as2,MI2=-JS2a2,或簡化為總慣性力F′I2=FI2,而作用線為距質(zhì)心s2的距離為lh2=MI2/FI2。
作變速運動的滑塊3是作平面移動的構件,所以有一個加在心S2上的慣性力FI3=-m3as3。而繞定軸轉動的曲柄1,若其軸線不通過質(zhì)心作變速轉動時其上作用有慣性力FI1=-m1as1和一個慣性力偶矩FI1=-JS1a1,或簡化為一個總慣性力F′I1;若其回轉軸線通過質(zhì)心,則只有慣性力偶矩MI1= -JS1a1。
內(nèi)燃機的活塞有承壓傳力、組成燃燒室的功能,由頂部、頭部和裙部三部分組成。其中裙部起導向作用,并承受側壓力,其長短取決于側壓力的大小和活塞直徑,具體組成如圖9所示。活塞構件常在高溫(600~700K)、高壓(3~9MPa)、高速(8~12m/s) 、潤滑不良的條件下工作,其受力情況十分復雜,主要受力分為氣體工作壓力、活塞組往復運動慣性力、側壓力及摩擦力,其中慣性力造成發(fā)動機周期性附加載荷,引起發(fā)動機強烈振動,對柴油機而言相當于活塞重量的300~600倍。

圖9 內(nèi)燃機活塞的結構
現(xiàn)將活塞作為隔離體,圖7所示為活塞受力簡圖,其中,F(xiàn)1(θ)為氣體對活塞的作用力;F2(θ)為連桿給活塞的力;F3(θ)為氣缸壁對活塞的側向力;F1(θ)為活塞的慣性力;pg(θ)為氣體壓力隨轉角的變化;d為氣缸直徑; r為曲柄半徑;α為連桿轉角。由活塞的平衡方程可得

由于一般內(nèi)燃機所用的曲柄連桿機構中曲柄連桿比λ<1/3,通過運動學分析,此時活塞運動加速度可以足夠精確地簡化表示為[7]。在圖8中,A點、B點和C點分別表示曲軸中心、曲柄銷中心和活塞銷中心,θ表示為曲柄轉角,α表示為連桿擺角。對式(4)、式(5)聯(lián)立求解即可得到F1(θ)、F2(θ)、F1(θ) 及單缸內(nèi)燃機轉矩 M (θ),對于多缸內(nèi)燃機,總轉矩等于不同相位的各缸轉矩的疊加。


圖10 活塞受力簡圖

a─活塞運動加速度;
α─表示為連桿擺角;
r─曲柄半徑;
θ─曲柄轉角;
ω─曲軸旋轉角速度;
l─連桿長度;
lb─連桿重心到連桿大頭的距離;
m2─連桿質(zhì)量;
m3─活塞組質(zhì)量。

圖11 內(nèi)燃機扭矩曲線
本文通過實施正確的軟件機構分析方法, 快速而準確地求解復雜多變工況下內(nèi)燃機連桿機構的運動參數(shù),分析各運動部件的運動規(guī)律,從而為后續(xù)的多種關鍵零部件( 如機體、曲軸、連桿、軸承等) 的強度、變形、疲勞和潤滑等專門分析提供了正確的輸入條件。文章還對曲柄連桿機構的受力狀態(tài)進行研究,將為內(nèi)燃機曲柄連桿機構進行優(yōu)化設計以降低噪聲和減少磨損奠定基礎;也為曲軸軸承及連桿軸承潤滑分析提供前提條件。
[1] 薛定宇,陳陽泉. 基于MATLAB/Simulink的系統(tǒng)仿真技術與應用[M]. 北京: 清華大學出版社,2002.
[2] 孫恒,陳作模. 機械原理. 6版[M]. 北京: 高等教育出版社,2001.
[3] 周進雄,張陵. 機構動態(tài)仿真——使用MATLAB和SIMULINK[M]. 西安: 西安交通大學出版社,2002.
[4] 戴旭東,等. 內(nèi)燃機系統(tǒng)動力學與油膜動力潤滑的耦合分析[J]. 西安交通大學學報,2003,37(1): 55. 58.
[5] 覃文潔. 內(nèi)燃機曲軸系振動響應的多體系統(tǒng)動力學分析方法[J]. 安全與環(huán)境學報,2002,2(2): 51. 53.
[6] 曹衛(wèi)彬,梁安波,李江全. 液壓挺柱配氣機構動力學模型計算的研究[J]. 內(nèi)燃機工程,2002,23(3): 58. 60.
[7] 周龍保. 內(nèi)燃機學 [M]. 北京: 高等教育出版社,2005.