999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

三維軸對稱駐點流系統的一些研究

2011-06-29 06:13:28張明捷黨龍飛徐艷芝
成都信息工程大學學報 2011年6期
關鍵詞:數學

張明捷, 黨龍飛, 徐艷芝

(成都信息工程學院數學學院,四川成都610225)

1 Introduction

In this paper,we are concerned with the following third order differential equations arising in the boundary layer theory

with boundary conditions

Which has been used to describe the 3D axisymmetric inviscid stagnation flow[1,2].A solution of(1)~(3)is called a similarity solution.The two-dimensional case,λ=g=0,was solved by Hiemenz[3].The axisymmetric stagnation flow towards a plate,λ=1 and g=f,was solved by Homann[4].Howarth[5]studied the case 0<λ<1 which can be applied to the stagnation region of an ellipsoid.Davey[6]investigated the stagnation region near a saddle point(-1<λ<0).For λ≤-1 the vorticity generated is not confined in the boundary layer and the existence of solutions cannot be shown[2].Up to now,there is a little study on the case of λ≤-1.

Utilizing the integral methods[7,8],Du Hauang and Zhang[9]presented a system of two integral equations on the case of λ<0 and obtained some properties and a non-existence result of(1)~ (3)on the case of λ<-4.

In this paper,we shall study(1)~ (3)for the case of λ∈ R and λ≠0,we shall obtain further results on(1)~(3)and a new non-existence result on the case of λ≤-1.

2 Positive solutions of a system of two integral equations

In[9],Du,Hauang,Zhang presented a system of two integral equations

Where G0,1(t,s)denotes the Green function for u″(t)=0 with u(0)=0 and u(1)=0 defined by

They obtained the following results:

(i)For λ<0(1)~(3)has a solution in∑if and only if(4)~(5)has a positive solution

(ii)For λ<-4(1)~(3)has no solution in ∑.

In this paper,let

and

Theorem1 If(λ,z,w)∈(-∞,+∞)×Q is a solution of(4)~(5),then

(iii)w(0)=0,w(1)=1 and w(t)≥-1 for t∈[0,1]if λ<0 and w(t)≤1 for t∈[0,1]if λ>0.

(i)Firstly,we prove z(t)=0.

If z(1)≠0,then z(t)≠0,t∈[0,1].

By the continuity of z(t),then m=min{z(t),t∈[0,1]}>0.From this and λ>0,we obtain by(4)

This implies

a contradiction.Hence,(i)holds.

Since z(t)>0 for t∈(0,1),we have

Integrating this inequality from 0 to ξ,we have

From this we obtain

Letting ξ→1-in the last inequality,we have,which contradicts∞.Thus,(ii)holds.

(iii)Letting t=0 and t=1 in(5),we have w(0)=0 and w(1)=1.

If λ>0 and there exist t0∈[0,1]such that w(t0)>1.Since w(0)=0,and w(1)=1,there must be exist t*∈(0,1)such that w(t*)=max{w(t):t∈[0,1]}and w(t*)>1.

By(5),we have

Reamrk1 Since we do not assume λ<0 and Q ?Q*,hence Theorem 1 in[9]is improved.

Utilizing the solutions of(z,w)∈Q*,we may construct the solutions of(1)~(3)and then the use of(4)~(5)is expanded.

Theorem2 If(z,w)∈Q*is a solution of(4)~(5),then(1)~(3)has a solution(f,g).

Proof.Let(z,w)∈Q*be a solution of(4)~(5).By Theorem 1(ii),we have

Let

Then η(t)is strictly increasing on[0,1)and

Let t=h(η)be the inverse function to η=η(t),we define the function

Then

and

From(6),we have

Differentiating(7)with respect to η,we have

Then f″(η)>0 for 0≤η<+∞.

Differentiating(8)with respect to η,we have

Differentiating(4)with respect to t,we have

By setting s=f′(α)and utilizing t=f′(η)and(8),we have

By(8)~(11),we have

Combing(10)and(11),we obtain

This completes the proof.

3 A non-existence result on(1)~(3)

Let

Lemma1 Let λ<0.If(f,g)∈Γis a solution of(1)~(3),then g″(∞)=0.

Proof.Since g′(+∞)=1,we have

Since(1)~(3),we have g?(0)=-λ,and λ<0.then g?(0)>0 and g″(η)>0.we have ?η*,such that g″(η)is increasing on[0,η*].(12)implies that there exists η0∈[η*,+∞)such that g″(η0)<g″(η*).Then we prove that g″(η)is decreasing on(η0,+∞).If there must exist η1,η2∈[ η0,+∞)with η1<η2such that g″(η1)<g″(η2).So let ?η∈[ η*,η2]such that g″(?η)=min{g″(η):η∈[ η*,η2]}.This implies g?(?η)=0 and g(4)(?η)≥0.

Differentiating(2)with η,we have

then

By(f,g)∈Γand λ<0,we have g(4)(?η)≤0,a contradiction.Hence g″(η)is decreasing on[ η0,+∞)and thenexists.By(12),we obtain g″(∞)=0.

Theorem3 If λ≤-1,then(1)~ (3)has no solution in Γ.

Proof.The proof is by a contradiction.If(1)~ (3)has a solution(f,g)in Γ,then g″>0.

Let η:=η(t)=(g′)-1(t)for t∈[0,1)be the inverse function to t=g′(η):[0,∞)→[0,1).It follows that g′is strictly increasing with[0,+∞)and η(t)=(g′)-1(t):[0,1)→[0,∞)with(g′)-1(0)=0

Let x(t)=g″(η)>0 for t∈[0,1),by Lemma 1,x(1)=.This implies that x(t)>0 for t∈[0,1)and x is continuous on[0,1).By Lemma 1,we see that x is continuous from the left at 1.Hence,we have x(t)∈C[0,1]and x(1)=0.

Using the Chain Rule to x(t)=g″(η),we obtainand by the Inverse Function Theorem,we have

This,together with g′(η)=t,implies

Integrating the last equality from 0 to t implies

Let y(t)=f′(η)for t∈[0,1),y(1)=1,then y(t)∈ C[0,1)and 0≤y(t)≤1.Notice thatwe have

Substituting g,g′,g″,g?and f into(2)implies

Integrating(13)from t to 1,we have

By x(1)=0,then

we have

Reamrk2 Theorem 12 improves non-existence result of(1)~ (3)in[6]from λ<-1 to λ≤-1.

[1]C Y Wang.Axisymmetric stagnation flow on a cylinder[J].Quart.Appl.Math.1974,32:207-213.

[2]C Y Wang.Similarity stagnation point solutions of the Navier-Stokes equations-review and extension[J].European Journal of Mechanics B/Fluids,2008,27:678-683.

[3]K Hiemenz.Die Grenzschicht an einem in den gleichformingen Flussigkeitsstrom eingetauchten graden Kreiszylinder[J].Dinglers Polytech.J,1911,326:321-324.

[4]F Homann.Der Einfluss grosser Zahigkeit bei der Stromung um den Zylinder und um die Kugel[J].Z.Angew.Math.Mech.,1936,16:153-164.

[5]L Howarth.The boundary layer in three dimensional flow-Part∏.The flow near a stagnation point,Philos[J].Mag.Ser.,1951,742:1433-1440.

[6]A Davey.A boundary layer flow at a saddle point of attachment[J].J.Fluid.Mech.,1961,10:593-610.

[7]G C Yang.Existence of solutions of laminar boundary layer equations with decelerating external flows[J].Nonlinear Analysis,2010,72:2063-2075.

[8]K Q Lan,G C Yang.Positive solutions of the Falker-Skan equation arising in boundary layer theory[J].Canad.Math.Bull.,2008,51(3):386-398.

[9]C Du,S J Huang,M J Zhang.On 3D axisymmetric inviscid stagnation flow related to Navier-Stokes equations[J].Nonlinear Analysis Form,2011,16:67-75.

猜你喜歡
數學
中等數學
中等數學(2021年4期)2021-12-04 13:57:52
中等數學
中等數學(2021年7期)2021-12-03 04:01:41
中等數學
中等數學(2021年1期)2021-12-02 03:08:08
中等數學
中等數學(2021年3期)2021-12-02 00:28:14
中等數學
中等數學(2020年11期)2020-12-18 01:23:21
我們愛數學
我為什么怕數學
新民周刊(2016年15期)2016-04-19 18:12:04
數學到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
我難過,因為我看到數學就難過
數學也瘋狂
主站蜘蛛池模板: 在线观看免费国产| 91年精品国产福利线观看久久 | 欧洲日本亚洲中文字幕| 国产成人综合网| 伊人久久久久久久久久| 狠狠v日韩v欧美v| 国产成人精品男人的天堂下载 | 国产午夜看片| 视频国产精品丝袜第一页| 久久国产精品夜色| 日韩精品亚洲一区中文字幕| 国产欧美日韩一区二区视频在线| 国产精品永久免费嫩草研究院| 天天躁日日躁狠狠躁中文字幕| 国产超薄肉色丝袜网站| 久久大香香蕉国产免费网站| 亚洲国产精品不卡在线| 国产精品久久久久久搜索| 欧美亚洲日韩不卡在线在线观看| 日韩在线欧美在线| 九九九精品成人免费视频7| 青草视频在线观看国产| 波多野结衣久久精品| 国产迷奸在线看| 91视频免费观看网站| 欧美高清日韩| 2021亚洲精品不卡a| 亚洲人成网线在线播放va| h网址在线观看| 狠狠v日韩v欧美v| 免费亚洲成人| 国产剧情一区二区| 亚洲三级成人| 日韩欧美国产三级| 久久久国产精品免费视频| 欧美一级色视频| 国产自产视频一区二区三区| AV不卡无码免费一区二区三区| 午夜a级毛片| 亚洲三级影院| 国产精品3p视频| AV在线天堂进入| 亚洲成人精品在线| 精品国产www| 久久久久亚洲av成人网人人软件| 中文字幕亚洲另类天堂| 高清精品美女在线播放| 国产综合色在线视频播放线视| 欧美精品v欧洲精品| 亚洲AⅤ永久无码精品毛片| 日本道综合一本久久久88| 亚洲国产中文综合专区在| 亚洲天堂伊人| 国产精品区网红主播在线观看| 午夜久久影院| 日韩视频福利| 久久精品嫩草研究院| 麻豆国产在线不卡一区二区| 91福利免费视频| 国产97公开成人免费视频| 亚洲无码不卡网| 免费在线a视频| 国产一二三区在线| 成人免费一区二区三区| 日本亚洲成高清一区二区三区| 欧美日韩高清| 亚洲一区二区三区在线视频| 伊人久久婷婷五月综合97色| 午夜精品久久久久久久2023| 久久精品女人天堂aaa| 婷婷丁香在线观看| 色哟哟国产成人精品| 精品国产www| 国产精品美女免费视频大全| 精品国产网| 日韩免费毛片| 国产一区免费在线观看| www亚洲天堂| 国产人人乐人人爱| 免费三A级毛片视频| 国产97区一区二区三区无码| 日本午夜精品一本在线观看|