999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Cultivation of Candida utilis on Cassava Peel Hydrolysates for Single

2012-04-29 00:00:00

Abstract: The growth of Candida utilis NRRL Y-1084 in acid and enzymatic hydrolysates of cassava peel and on glucose in a mineral salts medium was investigated in aerobic submerged cultivation. Kinetic and stoichiometric parameters for growth were determined. The cardinal temperatures of this yeast strain were 14 °C, 33 °C and 41 °C. C. utilis exhibited no absolute requirement for growth factors, although its maximum specific growth rate (μmax) was higher in the mineral salts medium with yeast extract than without, but its biomass yield coefficient (Yx/s) did not differ much in these two media. In the enzymatic hydrolysate, its Yx/s value on sugar was 0.44 with a μmax of 0.35 h-1, whereas the corresponding values were 0.52 and 0.48 h-1 in the acid hydrolysate and 0.50 and 0.37 h-1 in the mineral salts medium without yeast extract. The crude protein content of biomass grown in the glucose medium and the acid and enzymatic hydrolysates were 47.5%, 49.1% and 56.7%, respectively. The amino acid profile of the yeast biomass compared favourably with the FAO standard. Cassava peel hydrolysate has potential as a cheap carbohydrate feedstock for the production of yeast single cell protein by using C. utilis.

Key words: Candida utilis, yeast, cassava peel hydrolysate, amino acid profile, single-cell protein (SCP).

1. Introduction

Single cell protein (SCP) refers to the microbial biomass, or proteins extracted from there, obtained from processes in which bacteria, yeasts, filamentous fungi or algae are cultivated in large quantities as a protein supplement in animal feed or in human nutrition [1]. The protein can be consumed directly as part of the cells, particularly in animal feed formulations, or it can be extracted and processed into fibres or meat-like products for nutritious human food[2]. SCP, unlike the production of conventional plant and animal protein resources, does not require agricultural land and is not limited by sunlight because the micro-organisms can be grown in large bioreactor vessels or other suitable large scale cultivation systems. Other advantages of SCP production include the high growth rate of microbial cells, their ease of genetic manipulation and the high protein content of micro-organisms. Furthermore, SCP can be produced from a wide range of substrates, including agricultural and industrial wastes that constitute serious environmental problems.

Micro-organisms have the ability to upgrade low protein plant material to high protein feed [3]. Large scale utilization of methanol, starch and molasses as carbon feedstocks has proved economically viable for the production of animal feed and human food [4-6]. A continuous aerobic process has been successfully used for the production of SCP from cheese whey using the yeast Kluyveromyces fragilis [7-11]. In another instance, the suitability of deproteinized sweet and sour cheese whey concentrates as substrates for the production of SCP with Kluyveromyces marxianus was investigated [12]. Analysis of the amino acid composition of the SCP showed a distinct increase in eight out of ten essential amino acids compared to sweet and sour protein and exceeded the World Health Organization (WHO) guideline for valine, leucine, isoleucine, threonine, phenylalanine and tyrosine [12].

Yeasts are a rich source of not only proteins but also B-complex vitamins. They have been used as a supplement in animal feed to compensate the amino acid and vitamin deficiencies of cereals and are recommended as a substitute for soybean oil in diets for fowls [13]. It has been shown that the common carp can obtain a high portion of its dietary protein from the yeasts Candida tropicalis, C. utilis and C. lipolytica, with better results than with soybean or meat and bone meals [14]. In addition, yeast biomass is considered a cheap dietary supplement as it is easily produced on industrial scale from a number of by-products such as citrus pulp, molasses, paper industry wastes and fruit waste, as well as from hydrocarbons. Despite their vast potential, however, the use of yeast biomass as a protein source is not extensive and has been limited largely to the feeding of molluscs and as live feed in aquaculture [15]. Apparently sulphur amino acid deficiency restricts the use of yeasts, though there may also be other factors limiting their use, such as their high carbohydrate and nucleotide content [16].

Interest in the recovery of waste or by-products have been increasing for both economic and ecological reasons as well as for nutritional reasons [17]. In the last two decades in Nigeria there have been concerted efforts in finding ways of complete utilization of agro-industrial by-products, which sometimes constitute environmental hazards [18]. Cassava(Manihot esculenta Crantz syn. Manihot utilissima Pohl), a staple food of the majority of people in tropical Africa, Central and South America [19, 20], is subjected to various fermentations in the different countries to produce similar or different products [21]. In Brazil, Costa Rica and Bolivia, farina is often the end product, whereas in tropical Africa gari, fufu, lafun, chiwangue and myondo are produced from cassava [20, 22]. The various production processes are usually accompanied by some waste products that act as environmental pollutants [23]. Cassava peels, leaves and starch residues constitute 25% of the cassava plant[18]. These are usually discarded as wastes after harvesting and processing, with limited utilization due to their low protein, high crude fibre and cyanide contents [24]. The peel amounts to about 10%-20% of the root mass and is available all year round in Nigeria with an annual yield of approximately 4 million metric tonnes from the processing of cassava roots [25]. Little attention has been paid to the handling of the large quantity of cassava wastes that are generated. SCP production is a potential route for converting such wastes to a useful and valuable product.

The objectives of this study were to determine the growth kinetics of C. utilis in acid and enzymatic hydrolysates of cassava peel and to evaluate the chemical composition and amino acid profile of the resultant biomass with a view to its utilization as a food or feed protein supplement.

Acknowledgments

This work was supported by the John D. and Catherine T. MacArthur Foundation Grant awarded to O.O. Ezekiel and was undertaken in the Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa.

References

[1] IUPAC, Compedium of Chemical Terminology, 2nd ed., International Union of Pure and Applied Chemistry, 1997.

[2] C.R. Kuhad, A. Singh, K.K. Tripathi, R.K.Saxena, K.L. Eriksson, Microorganisms as an alternative source of protein, Nutr. Rev. 55 (1997) 65-75.

[3] M.I. Rajoka, Production of single cell protein through fermentation of a perennial grass grown on saline lands with Cellulomonas biazotea, World J. Microbiol. Biotechnol. 21 (2005) 207-211.

[4] E. Rosenberg, Exploiting microbial growth on hydrocarbons: new markets, Trends Biotechnol. 11 (1993) 419-424.

[5] T. Hongpattarakere, A. H-Kittikun, Optimization of single cell-protein production from cassava starch using Schwanniomyces castelli, World J. Microbiol. Biotechnol. 11 (1995) 607-609.

[6] D. Paul, R. Mukhopadhyay, B.P. Chatterjee, A.K. Guha, Nutritional profile of food yeast Kluyveromyces fragilis biomass grown on whey, Appl. Biochem. Biotechnol. 97(2002) 209-218.

[7] A.E. Ghaly, R.M.B. Hassan, Continuous production of single cell protein from cheese whey by Kluyveromyces frtagilis, Transactions of the ASAE 38 (4) (1995) 1113-1120.

[8] A.E. Ghaly, R.M.B. Hassan, N. Ben-Abdallah, Utilization of cheese whey lactose by Kluyveromyces fragilis for growth and energy under continuous conditions, Appl. Biochem. Biotechnol. 36 (1992) 301-322.

[9] M. Moresi, A. Truufio, E. Parente, Kinetics of continuous whey fermentation by Kluyveromyces fragilis, J. Chem. Technol. Biotechnol. 49 (1990) 205-222.

[10] J.B. Mickle, W. Smith, D. Halter, S. Knight, Perfomance and morphology of Kluyveromyces fragilis and Rhodotorula gracilis grown in cottage cheese whey, J. Milk Food Technol. 37 (1974) 481-484.

[11] A.E. Ghaly, M. Kamal, L.R. Correia, Kinetic modelling of continuous submerged fermentation of cheese whey for single cell protein production, Bioresour. Technol. 96(2005) 1143-1152.

[12] N. Schultz, L. Chang, A. Hauck, M. Reuss, C. Syldatk, Microbial production of single-cell protein from deproteinized whey concentrate, Appl. Microbiol. Biotechnol. 6 (2006) 515-520.

[13] B. Go?l, Tropical Feeds, FAO/Oxford Computer Journals Ltd., Version 1.7, 1991.

[14] M.A. Olvera-Novoa1, C.A. Martínez-Palacios, I. Olivera-Castillo, Utilization of torula yeast (Candida utilis) as a protein source in diets for tilapia (Oreochromis mossambicus Peters) fry, Aquacult. Nutr. 8 (2002) 257-264.

[15] M.F. Payne, R.J. Rippingale, Evaluation of diets for culture of calanoid copepod Gladioferens imparipes, Aquaculture 187 (2000) 85-96.

[16] G.L. Rumsey, R.A. Winfree, S.G. Hughes, Nutritional value of dietary nucleic acids and purine bases to rainbow trout (Oncorynchus mykiss), Aquaculture 108 (1992) 97-110.

[17] R. Macrae, R.K. Robinson, M.T. Sadle, Encyclopedia of Food Science, Food Technology and Nutrition, Academic Press, 1993, pp. 4835-4836.

[18] E.A. Iyayi, D.M. Losel, Protein enrichment of cassava by-products through solid state fermentation by fungi, J. Food Technol. Afr. 6 (2001) 116-118.

[19] B. Nestel, Current utilization and future potential for cassava, in: B. Nestel, R. Macintyre (Eds.), Chronic Cassava Toxicity, International Development Centre, Ottawa, 1973, pp. 11-26.

[20] D. Subrahmanyan, Processing: Fermented foods of cassava, Food Laboratory News No. 21 (1990) 9-12.

[21] I.A. Akinrele, Hydrocyanic hazard during large scale cassava processing, Trop. Sci. 26 (1986) 59-65.

[22] E. Giraud, A. Brauman, S. Keleke, B. Lelong, M. Raimbult, Isolation and physiological study of an amylolytic strain of Lactobacillus plantarum, Appl. Microbiol. Biotechnol. 36 (1991) 379-383.

[23] A.A. Onilude, Effect of cassava cultivar, age and pretreatment processes of cellulase and xylanase production from cassava waste by Trichoderma harzanium, J. Basic Microbiol. 36 (1996) 421-431.

[24] E.A. Iyayi, O.O. Tewe, Effect of protein deficiency in utilization of cassava peel by growing pigs, in: S.K. Haha, L. Reynolds, G.N. Egbunike (Eds.), Cassava as Livestock feed in Africa, Proceedings of the IITA/ILCA/University of Ibadan workshop, Nov. 14-18, 1988, pp. 54-59.

[25] S.K. Hahn, J. Keyser, Cassava: A basic food in Africa, Outlook Agric. 4 (1985) 95-100.

[26] J.C. du Preez, J.P. van der Walt, Fermentation of D-xylose to ethanol by a strain of Candida shehatae, Biotechnol. Lett. 5 (1983) 357-362.

[27] A.L. Woiciechowski, S. Nitsche, A. Pandey, C.R. Soccol, Acid and enzymatic hydrolysis to recover reducing sugar from cassava bagasse: An economic study, Braz. Arch. Biol. and Technol. 45 (2002) 393-400.

[28] J.C. du Preez, D.F. Toerien, The effect of temperature on the growth of Acetobacter calcoaceticus, Water SA. 4(1978) 10-13.

[29] S.J. Pirt, Principles of Microbe and Cell Cultivation, Blackwell Scientific Publications, Oxford, 1975.

[30] L.H. Stickland, The determination of small quantities of bacteria by means of the biuret reaction, J. Gen. Microbiol. 5 (1951) 698-703.

[31] AOAC, Official methods of analysis, 13th ed., Association of Official Analytical Chemists, Washington, DC. 1990.

[32] R.D. Cooke, An enzymatic assay for total cyanide content of cassava (manihot esculanta Crantz), J. Sci. Food Agric. 29 (1978) 345-352.

[33] FAO/WHO, Ad hoc Expert “Committe, Energy and Protein requirements”: World Health Publishing Co., 1957, pp. 35-36.

[34] M. Tobajas, E. Garc?á-Calvo, Comparison of analysis methods for determination of the kinetics in batch cultures, World J. Microbiol. Biotechnol. 16 (2000) 845-851.

[35] R.S. Moreton, Growth of Candida utilis on enzymatically hydrolysed potato waste, J. Appl. Bacteriol. 44 (1978) 373-382.

[36] E. Postma, C. Verduyn, W.A. Scheffers, J.P. van Dijken, Enzymatic analysis of the Crabtree effect in glucose limited cultures of Saccharomyces cerevisiae, Appl. Environ. Microbiol. 53 (1989) 368-477.

[37] J.M. Peinado, A. Barbero, C. Nombela, Starch biodegradation by yeast: Glucose effects and utilization of other ends products of starch hydrolysis, in: O.M. Neissel, R.R. van der Meer, K.C.A.M. Luyben (Eds.), Proceedings of the 4th European Congress on Biotechnology, Elsevier Science Publishers, the Netherlands, 1987, pp. 528-530.

[38] H.M. Musenges, J.G. Anderson, R.S. Holdom, Growth of Candida utilis on enzymatically hydrolysed cassava, Biotechnol. Lett. 2 (1980) 35-40.

[39] D. Herbert, Stoichiometric aspects of microbial growth, in: A.C.R. Dean, D.C. Ellwood, C.G.T. Evans, J. Melling(Eds.), Continuous Culture 6, Ellis Horwood, Chichester, 1976, pp. 1-30.

[40] R. Tweyongyere, I. Katongole, Cyanogenic potential of cassava peels and their detoxification for utilization as livestock feed, Vet. Hum. Toxicol. 44 (2002) 366-369.

[41] V. Apaire, J.P. Guiraud, P. Galzy, Selection of yeasts for single cell protein production on media based on Jerusalem artichoke extracts, Z. Allg. Mikrobiol. 23 (1983) 211-218.

[42] A.E.V. Martini, M.W. Miller, A. Martini, Amino acid composition of whole cells of different yeasts, J. Agric. Food Chem. 27 (1979) 982-984.

[43] P.J. Anderson, K.E. McNeil, K. Watson, Thermotolerant single cell protein production by Kluyveromyces marxianus var. marxianus, J. Ind. Microbiol. 3 (1988) 9-14.

主站蜘蛛池模板: 91九色最新地址| 伊人久久久久久久久久| 亚洲精品无码高潮喷水A| 免费国产高清视频| 午夜福利亚洲精品| 免费观看国产小粉嫩喷水| 亚洲欧美在线综合图区| 日本欧美午夜| 97人人模人人爽人人喊小说| 亚洲精品va| 亚洲成aⅴ人在线观看| 激情無極限的亚洲一区免费| 亚洲床戏一区| 国产jizzjizz视频| 亚洲人成人无码www| 思思99思思久久最新精品| 欧洲熟妇精品视频| 精品国产91爱| 亚洲国产综合精品中文第一| 久精品色妇丰满人妻| 黄色网址免费在线| 日本午夜网站| 亚洲国产成熟视频在线多多| 在线观看国产黄色| 成人亚洲国产| 久久91精品牛牛| 久久久久国色AV免费观看性色| 日韩欧美国产区| 啊嗯不日本网站| 亚洲精品图区| 美女亚洲一区| 中文字幕在线播放不卡| 亚洲国产成人久久77| 97se亚洲综合不卡| 国产精品hd在线播放| 波多野结衣一二三| 欧美a在线看| 亚洲国产中文在线二区三区免| 伊人成人在线| 无码免费试看| 日韩二区三区| 国产一区在线视频观看| 久草国产在线观看| 精品剧情v国产在线观看| 欧美色99| 国产高清在线观看91精品| 亚洲成人网在线观看| 夜夜拍夜夜爽| 亚洲最猛黑人xxxx黑人猛交| 久久久久免费精品国产| 天天色综合4| 亚洲视频一区| 一本大道无码高清| 中国一级毛片免费观看| 她的性爱视频| 国产一区二区三区在线观看视频 | 99久久精品美女高潮喷水| 欧美福利在线| 91色在线视频| 欧美成一级| 色哟哟国产精品一区二区| 色综合中文综合网| 91人妻在线视频| 免费va国产在线观看| 亚洲v日韩v欧美在线观看| 四虎永久在线精品影院| 国产激情无码一区二区APP| 欧洲欧美人成免费全部视频| 精品国产美女福到在线不卡f| 91年精品国产福利线观看久久| 久久综合AV免费观看| 国产香蕉国产精品偷在线观看| 亚洲无码37.| 成人国产精品网站在线看| 亚洲狠狠婷婷综合久久久久| 免费国产不卡午夜福在线观看| 国产精品中文免费福利| 亚洲天堂视频在线免费观看| 99精品伊人久久久大香线蕉 | 五月天久久综合| 欧美激情综合一区二区| 欧美日韩国产高清一区二区三区|