999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Millimeter Wave Communication for Cellular and Cellular-802.11 Hybrid Networks

2012-05-22 01:22:22PhilipPietraski,I-taiLu
ZTE Communications 2012年4期

Philip Pietraski

I-tai Lu

The demand for wireless data has been driving network capacity to double about every two years for the past 50 years,if not 100 years,and this has come to be known as Cooper’s Law.In recent years,this trend has accelerated as a greater proportion of the population adopts wireless devices with ever greater capabilities,including tablets that support HD video and other advanced capabilities.Many cellular operators have tried to adapt this trend by throttling data rates,backing away from all-you-can-eat data plans,and offloading to WiFi.Over the next decade,further increases in demand are expected,and this issue of ZTECommunications examines millimeter wave communications as one technology that may answer the call.Historically,the ever-growing demand for data capacity has been met by adding more spectrum and improving spectral efficiency,but spectrum reuse employing smaller cells has been by far the most popular means of adding network capacity.Deploying cells with ever greater density is a simple way of adding capacity to a network.Increasing the number of cells in the network increases the network capacity without increasing the capacity per cell.However,this approach becomes cost-prohibitive in part because it is expensive to roll out all these cells and provide them with a quality backhaul connection,for example,fiber.A less-expensive means of adding network capacity is needed in the long term.

As cells become smaller and link distances have become shorter,an alternative to adding capacity and reducing deployment costs is to use much higher carrier frequencies.Shorter link distances,which come with smaller cells,combined with recent advances in millimeter wave transceivers and antennas opens the door for the use of millimeter wave spectrum in cellular systems.An obvious benefit to this is the availability of a huge amount of spectrum.

The 60 GHz unlicensed band alone offers 5-9 GHz of bandwidth(the exact amount depends on country),and there are many other millimeter wave and terahertz bands that have potential.Another great benefit of millimeter wave carriers is that high-gain,highly directional,electrically steerable antennas can be very small and greatly reduce interference.The wide bandwidths and narrow steerable beams enable low-cost deployment based on a wireless backhaul.

WirelessHD devices with 60 GHz phased array antennas are already on the market,and WiGig/802.11ad devices are on their way.ABIresearch predicts that by 2016 one third of all WiFiproducts will be tri-band(2.4/5/60 GHz).Although WiGig is intended to be an indoor,short-link technology(~10m),it may be an important standard used as a starting point for larger networks to use millimeter wave communications.Mass production of devices such as these will continue to drive costs down for millimeter wave radios and antennas that should extend to longer links.

The 60 GHz unlicensed band is of particular interest because of the growing ecosystem being built around consumer electronics that support WirelessHD and WiGig.However,the fact that the band is unlicensed means that it is riskier for cellular service providers to adopt.Molecular oxygen absorption at 60 GHz creates further confusion as some argue that these losses limit link distance.Others argue that reduced interference is worth it.Below 60 GHz,the LMDS bands are of interest and are underutilized;however,they offer less totalspectrum than the 60 GHz unlicensed band.Recent technological advances may soon enable communications well above 100 GHz and into the terahertz region above 300 GHz,where allocations have not yet been made by regulators,and even greater bandwidths could become available.Some agreement on a band will be needed in order to make good progress.Of course,there are also great challenges with millimeter wave systems.Although link distances in a line-of-sight environment might be easily closed with millimeter wave technology,the environment poses particular problems.Millimeter waves do not generally penetrate through buildings or diffract around them.Furthermore,humans are great blockers of millimeter waves and tend move around more than buildings.The problem of cost-effective routing around buildings and people will be one of the larger problems.

In this special issue,we examine the role that millimeter wave communication could play in cellular and cellular hybrid networks in access and backhaul.The first paper provides an introduction to the potential use of millimeter waves in a large network context and provides a preliminary simulation study.The second paper provides an overview of the 802.11ad/WiGig MAC and PHY.The third paper provides an experimental study of human blocking of millimeter wave propagation.The fourth paper describes the design and measurements of a 60 GHz LTCC phased array antenna with integrated waveguide distribution network that could be suitable for backhaul applications.The fifth paper considers the use of MIMO techniques for millimeter wave in line-of-sight conditions.

We are grateful to the authors who made contributions to this special issue and to the reviewers who spent their valuable time to provide valuable and constructive feedback.We hope that you find this special issue interesting and useful.

We are grateful to the authors who made contributions to this special issue and to the reviewers who spent their valuable time to provide valuable and constructive feedback.We hope that you find this special issue interesting and useful.

Biographies

Phil Pietraski(philip.pietraski@interdigital.com)received his BSEETfrom DeVry University in 1987.He received his BSEE,MSEE,Grad.Cert.in wireless communications,and PhD EEfrom Polytechnic University(now NYU-Poly),Brooklyn,in 1994,1995,1996,and 2000.

He joined InterDigital Communications in 2001 and is currently a principal engineer leading research activity in wireless communications,most recently in millimeter wave communications and future cellular architectures.He holds more than 50 patents in wireless communications and has authored multiple conference and journal papers.He is vice chair of the MoGig(Mobile Gigabit)working group at IWPC and a trustee for DeVry NJcampuses.

Prior to his transition to wireless communications in 2000,he was a research engineer at Brookhaven National Laboratory,National Synchrotron Light Source,responsible for beam-line instrumentation and X-ray detector R&D.He has also conducted research at the Polytechnic University for the Office of Naval Research(ONR)in underwater source localization.

I-Tai Lureceived his PhD degree in electronic engineering from Polytechnic University of New York.He is currenlty professor and director of the online program of the Department of Electrical and Computer Engineering,Polytechnic Institute of New York University.He has worked in wave propagation and inverse problems with applications in underwater and structure acoustics,non-destructive testing,microwave engineering,sonar and radar.His current research interests include wireless communications,in which he has made contributions to the developments of Wireless LAN(IEEE802.11n)and 3G cellular communications(WCDMA).He is currently involved in the development and standardization of the 4G(3GPPLTE-A)and future generations of wireless communications systems.He has published more than 200 journal and proceeding papers and holds 6 patents.He has given more than 50 invited lectures and spoken at more than 200 conferences,workshops,and seminars.

主站蜘蛛池模板: 国产高清在线精品一区二区三区 | 国产精品无码AV片在线观看播放| 亚洲精品片911| 欧美不卡视频在线观看| 精品少妇人妻av无码久久| 精品人妻无码中字系列| 国产乱子伦无码精品小说| 国产精品白浆在线播放| 久久久久青草线综合超碰| 国模私拍一区二区| 毛片卡一卡二| 精品国产电影久久九九| 美女视频黄频a免费高清不卡| 国产第一页屁屁影院| 婷婷激情亚洲| 久久国产精品嫖妓| 91精品国产情侣高潮露脸| 国产欧美日韩一区二区视频在线| 中文精品久久久久国产网址| 日韩精品无码不卡无码| 亚洲中文字幕无码爆乳| 国产高清在线观看91精品| 蜜臀AVWWW国产天堂| 国产一级毛片yw| 狠狠久久综合伊人不卡| 国产成人精品免费视频大全五级| 亚洲国产一区在线观看| 中文字幕色在线| 在线国产综合一区二区三区| 欧美19综合中文字幕| 成人伊人色一区二区三区| 喷潮白浆直流在线播放| 免费人欧美成又黄又爽的视频| 波多野结衣AV无码久久一区| 九九热视频精品在线| 国产区在线观看视频| 国产乱人免费视频| 97久久精品人人| 亚洲高清中文字幕| 999精品视频在线| 九九热这里只有国产精品| 亚洲色图狠狠干| 亚洲人成网线在线播放va| 日本久久网站| 中文字幕va| 欧美成人免费一区在线播放| 色天堂无毒不卡| 国产黑丝一区| 亚洲国产成人综合精品2020| 久久香蕉欧美精品| 看国产毛片| 亚洲欧美日韩成人高清在线一区| 亚洲无码A视频在线| 中日韩一区二区三区中文免费视频| 亚洲国产天堂久久综合226114| 日本欧美一二三区色视频| 99r在线精品视频在线播放| 亚洲第七页| 久久综合婷婷| 超清无码熟妇人妻AV在线绿巨人 | 国产精品不卡片视频免费观看| 中日韩欧亚无码视频| 色噜噜狠狠色综合网图区| 日韩东京热无码人妻| 18禁不卡免费网站| 毛片一级在线| 日韩大乳视频中文字幕| 午夜毛片免费观看视频 | 国产不卡国语在线| 国产成年女人特黄特色大片免费| 无码国产偷倩在线播放老年人 | 丰满人妻中出白浆| 55夜色66夜色国产精品视频| 黄色一及毛片| 26uuu国产精品视频| 亚洲综合香蕉| 国产玖玖视频| 亚洲国产日韩一区| 国产欧美成人不卡视频| 手机在线国产精品| 日韩a在线观看免费观看| 红杏AV在线无码|