翁艷琴 ,石曙東 ,解顏銘
(1.湖北師范學院 數學與統計學院,湖北 黃石 435000;2.湖北師范學院 計算機科學與技術學院,湖北 黃石 435000)
協議的安全性分析在安全協議的設計中起著重要的作用,Kailar邏輯的提出主要是針對電子商務協議的可追究性,但它不能分析簽名的密文,對協議的證明不嚴格。SVO邏輯也可用于電子商務協議的形式化分析,它集成了BAN、GNY、AT等邏輯的優點,具有很好的擴展能力。本文針對Kailar邏輯的不足,借助SVO邏輯的分析思想對Kailar邏輯進行了改進和完善,使得新的Kailar邏輯能分析簽名密文,嚴格推證協議是否具有不可否認性。
Kailar邏輯的基本架構包含基本語句、分析假設和推理原則,限于篇幅,本文只對涉及的語句、推理原則進行說明,其他的不一一列舉。
(1)基本語句A,B,C……為參與協議的主體,通常用P指代。TTP專指可信的第三方。m為一個主體給另一個主體發送的原子消息。C為原子消息外的消息。Ki為主體i的公開密鑰。Ki-1為與Ki對應的秘密私鑰。x,y……為命題。
(2)基本推理原則為以下3個:

本文假定發送者為A,接收者為B,可信第三方為TTP,其他符號含義同上。在Kailar邏輯中,只是涉及了接收方對發送方的主體簽名的追究性,沒有涉及發送方對接收方的簽名的追究性,同時對第三方TTP對參與協議的其他方的追究性也沒有明確的推理規則。本文借助SVO邏輯的思想,對Kailar邏輯進行了完善,改進后的推理原則如下:
(1)發送方的簽名追究性
(2)接收方的簽名追究性兩方間:
三方間:
不可否認協議(類NG協議)的交互過程如圖1所示。

圖1 類NG協議交互圖
圖1中的符號含義為:A、B為協議參與雙方,TTP為可信第三方。L為協議輪標志。Na、Nb為新的隨機數。SA、SB為 A、B 的私鑰。 SAT、SBT分別為 A、T間共享密鑰,B、T間共享密鑰。Kx為 A產生的消息密鑰。C=(m)Kx-1,m為發送的消息原語。此協議中A發送給B一個由Kx加密的消息C后通過第三方TTP傳遞Kx給B。此協議具有實現A、B、TTP間的消息可追究性的性質。
(1)協議的前提和假設
假設 1:A Can prove(KBAuthenticates B);
假設 2:B Can prove(KAAuthenticates A);
假設 3:Shared(A,KAT,TTP);
假設 4:Shared(B,KBT,TTP);
假設 5:A Believe TTP;
假設 6:B Believe TTP。
(2)說明協議目標
G2:B Believe(A Sent m);
G3:TTP Believe(A Sent m);
G4:TTP Believe (B Received m)。
(3)運用規則和公理進行推證協議理想化描述為:
(M1)B Received((B,L,Na,C)Signedwith KA-1)
(M2)A Received((A,L,Na+1,C)Signedwith KB-1)
(M3)TTP Received((Kx,C)Signedwith KAT)
(M4)TTP Received(C Signedwith KBT)
(M5)B Received((Kx,Nb)Signedwith KBT)
(M6)TTP Received((Kx,Nb+1)Signedwith KBT)
(4)協議分析
①由協議描述(M2)知 A Received(C Signedwith KB-1)(規則 P14)。結合假設 1可得結論 1:A Can prove(B SaysC)(規則 P4)。 由原則 P1和 P2可 得 結論 2:A Can prove(B Sent C)。 再結合已知 A Sent(Na∧C)和A Received(Na’∧C),根據原則 P10 可得結論 3:A Can prove(B Received C)。其中,C=(m)Kx-1,即有結論 4:A Can prove(B Received m Sighned with Kx-1)。
由協議描述 (M6)知 TTP Received((Kx)Signedwith KBT)(規則 P14), 而由假設 4, 基于原則 P6有結論 5:TTP Can prove(B Says Kx),根據原則 P1 和 P2 有結論6:TTP Can prove(A Sent Kx)。 由結論 6 結合已知 TTP Sent(Nb∧Kx)和 TTP Received(Nb’∧Kx),運 用 原 則 10可得出結論 7:TTP Can prove(B Received Kx),結合假設 5和結論 7,運用原則 P6可得結論 8:A Can prove(B Received Kx)。結合結論 4,應用原則 P8可推出結論 9:A Can prove(B Received m),進而應用原則P13可得結論 10:A Believe(B Received m),此結論即為要達成的協議目標G1。
②由協議描述 (M1)基于規則 P14知 B Received(C Signedwith KA-1),而由假設 2,運用原則 P4可得結論 11:B Can prove(A says C),進一步運用原則 P1 和P2 可得結論12:B Can prove (A Sent C), 而 C=(m)Kx-1,即有結論 13:B Can prove(A Sent m Sighned with Kx-1)。
由 描 述 (M3)知 TTP Received(KxSignedwith KAT),結合假設 3和規 則 P4有結論 14:TTP Can prove(A Says Kx),進一步結合假設 6,應用規則 P5有結論 15:B Can prove(A Says Kx)。 而結論 11 為 B Can prove(A says C),即 B Can prove (A Says m Sighned with Kx-1),應用原則 P9可得結論 16:B Can prove(A Says m)。進一步根據原則 P1和 P2有結論 17:B Can prove(A Sent m), 再根據原則 P12可得結論 18:B Believe(A Sent m)。該結論即為要達成的協議目標G2。
③基本推理規則 P14,由協議描述 (M3)知 TTP Received(C Signedwith KAT),結合假設 3和規則 P7有結論 19:TTP Can prove(A Says C), 而已有結論 14為TTP Can prove(A Says Kx),已 知 C=(m)Kx-1,故 由 P9可得結論 20:TTP Can prove(A Says m),進一步應用P1和 P2原則有結論 21:TTP Can prove (A Sent m),再基于原則 P12可得結論 22:TTP Believe(A Sent m)。結論22即為要達成的目標G3。
④由協議描述(M4)、假設 4、結論 19和原則 P11可得結論 23:TTP Can prove(B Received C),結合已知C=(m)Kx-1和結論 7, 基于原則 P8可得結論 24:TTP Can prove(B Received m),進一步基于基本推理原則P13 得出結論 25:TTP Believe(B Received m),結論 25即為要達成的目標G4。
由上述分析可知,該協議的4個目標都可滿足,協議的各方的信任都可以建立,具有不可否認的性質,協議具有追究性。
基于推理結構性方法體系通常由一些命題和推理公理組成,命題表示了主體對消息的信仰或知識,運用推理公理可以從已知的知識和信仰推導出新的知識和信仰。其中,Kailar邏輯和SVO邏輯是最重要的兩種方法,各具優點和不足。針對Kailar邏輯的不足,本文借助SVO邏輯的思想對其進行了改進和完善,使得它能更好地應用于協議的不可否認性和可追究性的分析。將擴展了的Kailar邏輯應用于類NG協議的可追究性的分析,證明了該協議可追究方面的安全性質。該協議分析方法簡單、語義明確,為電子商務類協議的分析提供了強有力的工具。但是還有一些需要改進的地方,例如如何應用它來分析協議的公平性,如何引入恰當的初始化假設等。
[1]范紅,馮登國.安全協議形式化分析的研究現狀與有關問題[J].網絡安全技術與應用,2001(8):12-15.
[2]KAILAR R. Accountabitity in electronic commerce protocols[J].IEEE Transactions on Software Engineering,1996,22(5):313-328.
[3]ZHEN J,GOLLMANN D.A fair non-repudiation protocol[J].IEEE Computer Society Symposium on Research in Security and Privacy,1996.
[4]范紅,馮登國.安全協議理論與方法[M].北京:科學出版社,2003.
[5]ZHOU J,GOLLMAN D.A fair non-repudiation protocol[C].Proceeding of1996 IEEE Symposium on Security and Privacy, 1996:55-61.
[6]周典萃,卿斯漢,周展飛.Kailar:邏輯的缺陷[J].軟件學報,1999,10(12):1238-1245.
[7]卿斯漢,常曉林,章江.安全電子商務協議 iKP I的設計和實現[C].信息和通信安全——CC ICS’99:第一屆中國信息和通信安全學術會議,2000.230-239.
[8]ISO/IEC 1388822,Information technology security techniques non-repudiation part2: mechanisms using symmetrical techniques[S].International Organization for Standardization,1998.