999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

由α-萘乙酸構(gòu)筑的一維銅(Ⅱ)配位聚合物的合成、結(jié)構(gòu)和性質(zhì)研究

2012-09-15 11:45:24尹福軍趙宏許興友楊緒杰
關(guān)鍵詞:南京

尹福軍趙 宏許興友楊緒杰

(1南京理工大學(xué)化工學(xué)院,南京 210094)

(2淮海工學(xué)院,江蘇省海洋資源開發(fā)研究院,連云港 222005)

(3淮陰工學(xué)院,淮安 223003)

由α-萘乙酸構(gòu)筑的一維銅(Ⅱ)配位聚合物的合成、結(jié)構(gòu)和性質(zhì)研究

尹福軍1,2趙 宏2許興友*,1,3楊緒杰1

(1南京理工大學(xué)化工學(xué)院,南京 210094)

(2淮海工學(xué)院,江蘇省海洋資源開發(fā)研究院,連云港 222005)

(3淮陰工學(xué)院,淮安 223003)

合成了一維聚合物[Cu(NAA)2]n(HNAA=α-萘乙酸),采用單晶X-射線、FTIR和元素分析對(duì)生成的晶體進(jìn)行了結(jié)構(gòu)表征。該聚合物屬于正交晶系,Pbcn 空間群,a=3.077 2(3)nm,b=1.272 56(11)nm,c=1.023 51(9)nm,V=4.008 0(6)nm3,Z=8。Cu(Ⅱ)的配位幾何構(gòu)型是五配位的扭曲四方錐,配體的羧基采用μ2-η1∶η1和μ3-η2∶η1兩種不同的橋聯(lián)配位模式,連結(jié)Cu(Ⅱ)離子形成1D鏈,1D鏈又被C-H-π作用力進(jìn)一步連結(jié)形成2D層和3D固態(tài)超分子結(jié)構(gòu)。磁性研究表明:在該聚合物中,相鄰銅離子間存在反鐵磁偶合作用。還對(duì)其熱穩(wěn)定性進(jìn)行了研究。

α-萘乙酸;Cu(Ⅱ)聚合物;磁性;熱重

0 Introduction

The design and construction of metal-organic coordination polymers(MOCPs)have attracted considerable attention due to their interesting structural chemistry and potential applications in gas storage,separation,catalysis,magnetism,luminescence,drugdelivery[1-6],and nonlinear optics(NLO),and optical limiting capability[7-8].The structures of coordination polymers rely on several factors,but to select suitable bi-or multi-dentate bridging ligands is no doubt the key factor because it has an obvious influence on the topologies of coordination polymers.The behaviors of carboxylate ligands have been adopted to construct various structural coordination frameworks,because they can exhibit a variety of bonding modes to metals,including(i)terminal monodentate,(ii)chelating to a single metal,(iii)bridging bidentate to two metals in a syn-syn-,syn-anti-,an anti-anti-fashion,and (iv)bridging tridentate to two metal centers[9-10].These interesting findings have prompted us to seek this kind of carboxylate ligands to synthesize desired complexes.Thus,we chose carboxylic acid ligand,αnaphthylacetic acid (HNAA)with a bulky aromatic group,because it may introduce additional π-π and C-H…π interactions in stabling the structures of metal-organic frameworks.By doing so,we hope to obtain interesting coordination polymers.Among our attempts,a new polymer,namely[Cu(NAA)2]n(1),was obtained as crystals suitable for single-crystal X-ray analysis.The magnetic and thermal properties of the polymer 1 were investigated as well.

1 Experimental

1.1 Instruments and materials

All chemicals were of reagent grade obtained from commercial sources and used without further purification.IR Spectrum was recorded on a Nicolet NEXUS 470-FTIR spectrophotometer as KBr pellets in the 400~4 000 cm-1region.Elemental analyses(C,H)were carried out on a FLASH EA1112 Elemental Analyzer.TG-DSC measurements were performed by heating the sample from 20 to 800℃at a rate of 10℃·min-1on a NETZSCH STA 409PC differential thermalanalyzer.Variable temperature magnetic susceptibility data were obtained on polycrystalline Samples from 2 to 300 K in a magnetic field of 2 kOe,using a Quantum Design MPMS-XL7 SQUID magnetometer.All magnetic data have been corrected for diamagnetism by using Pascals constants[11].

1.2 Synthesis of the title complex

0.093 g (0.5 mmol)HNAA and 0.05 g(0.25 mmol)copper(Ⅱ)acetate was dissolved in 20 mL deionized water,and the pH value of the solution was adjusted to about 8 with sodium hydroxide solution(0.1 mol·L-1).The mixture was heated to reflux for 1 h in a water bath and then cooled to room temperature with green precipitate.The precipitation was redissolved in 30 mL tetrahydrofuran and left to stand at room temperature for several days,green block crystals of 1 were obtained.Yield:79% (based on Cu).Crystals of 1 are stable in the air.Anal.Calcd.for C24H18CuO4(%):C:66.35,H:4.14.Found(%):C:66.04,H:4.30.IR (cm-1,KBr):3 442(s),3 045(w),2 921(w),1592(s),1511(m),1409(s),1299(w),1260(m),1 047(w),1 017(w),781(s),719(m),647(m),580(w),547(m).

1.3 Crystal structure determination

A green block single crystal of the title complex(0.10 mm ×0.10 mm ×0.10 mm)was selected and mounted on a glass fiber.All measurements were made on a Bruker Smart 1000 diffractometer with a graphite-monochromated Mo Kα radiation(λ=0.071 073 nm).All data were collected at 298(2)K using the ω-2θ scan mode and corrected for Lorenz-polarization effects.A total of 19 795 reflections in the range of 2.55°to 25.02° (-31≤h≤36,-13≤k≤15,-12≤l≤11)and 3 535 unique ones (Rint=0.090 9)were collected.The empirical absorption corrections by SADABS were carried out.

The structure was solved by direct methods and expanded by Fourier technique.The non-hydrogen atoms were refined with anisotropic thermal parameters.The maximum peak in the final difference Fourier map is 471 e·nm-3and the minimum-301 e·nm-3.In the final circle of refinement the largest parameter shift(Δ/σ)maxis 0.000.All calculations were performed with SHELX-97 crystallographic software package[12].The crystal data and refinement details for the compound 1 are listed in Table 1,and the selected bond lengths (nm)and bond angles(°)are given in Table 2.

CCDC:835977.

Table 1 Crystallographic data for complex 1

Table 2 Selected bond lengths(nm)and bond angle(°)of complex 1

2 Results and discussion

2.1 Crystal structure of 1

The asymmetric unit of 1 and the coordinated environment of copper(Ⅱ) ion showed in Fig.1.The crystal data and structure refinement for the title complex listed in Table 1.The asymmetric unit of the title polymeric compound (Fig.1)contains one Cu (Ⅱ)cation and two NAA-anion ligands.The Cu(Ⅱ) cation is coordinated by four O atoms (O1,O3,O2i,O4i,symmetry code:i-x+1,-y+1,-z+1)from four NAA-anions in the basal plane and the apical position is occupied by O4ii(symmetry code:iix,-y+1,z+1/2)from a fifth NAA-anion to complete the slightly distorted square-pyramidal coordination geometry.Cu1 atom is displaced by 0.018 09(4)nm from this plane in the direction of the apical O4iiatom.The corresponding equatorial Cu-O bonds are in the range 0.193 5(3)to 0.201 7(2)nm.The apical Cu1-O4iibond is 0.219 2(2)nm,it is longer than other Cu-O bonds in the basal plane,showing the typical Jahn-Teller distortion.The distance of Cu-Cu is 0.258 68(8)nm,which is shorter than the separation reported,indicating a Cu-Cu interaction in this complex[13].The max bond angles around central Cu1 ion are 169.44(11)°and 169.23(10)°,others range from 87.53(13)°to 95.25(12)°close to 90°,the distorted index τCu1=0.004(4)[14].The selected bond lengths and bond angles are listed in Table 2.

In NAA-anions,carboxylate groups take twodifferent coordination modes.One carboxylate group takes a μ2-η1∶η1chelating coordinate mode with Cu(Ⅱ)ion,the other one take a μ3-η2∶η1bridging coordination mode,which connects the adjacent Cu(Ⅱ)ion to form a infinite extension zigzag polymeric chain(Fig.2).

There are C-H-π interactions between naphthyl rings from neighbor chains since the separation of centroid-to-C is 0.354 3 nm.These one-dimensional chains are first extended into a 2D layer through this interaction.And then 2D layers further are linked together to give rise to 3D solid-state structure by CH-π with a distance of 0.441 0 nm[15].

2.2 Magnetic properties

Magnetic susceptibility measurements of complex 1 were made in the temperature range 2~300 K.Fig.4 gives the plots of χMversus temperature (T).The χMvalue decreases as the temperature is lowered,which indicates the presence of antiferromagnetic interactions between the Cu(Ⅱ) centers bridged by the carboxylate groups.Although the expression for a simple dinuclear structure also reproduces correctly thetemperaturedependenceofχMofthechain compound,a better fit is obtained by using the expression developed by Hatfield and co-workers[16]for alternating chain compounds,which gives g=2.08,2J=-254 cm-1,an alternating factor α=0.016 and p=1.23%(the TIP was here fixed to 3.12×10-4cm3·mol-1.These results are in agreement with the many reports of coupling of Cuions through a tetracarboxylate bridge[17].In the case of the tetranuclear and chain compounds,the additional bridge corresponds to the apical coordination sites of the Cuions,where the spin density is expected to be negligible in any case,since the structure indicates that the magnetic orbital is d.On the contrary,the carboxylate bridges are coordinated in equatorial positions,in a syn-syn fashion,yielding a strong overlap and therefore a strong antiferromagnetic coupling.

2.3 Thermogravimetric analysis(TGA)

From the thermal analysis curve(TG/DTG)of the title complex 1 (Fig.5),we can see that there are two weight loss steps in the temperature range of 25~ca.570℃,corresponding to the decomposition of the organic ligand NAA.It firstly loses weight from room temperature to ca.470 ℃ (obsd.57.25%,calcd.59.07%),corresponding to the loss of two naphthalene molecules.The residue is copper acetate.The second weight loss of 28.96%from 470 to 560 ℃ results from the release of CO2and CH4molecules,corresponding to the decomposition of the copper acetate(calcd.27.72%).The residue is black CuO.

[1]Culp J T,Goodman A L,Chirdon D,et al.J.Phys.Chem.C,2010,114(5):2184-2191

[2]Cordovilla C,Coco S,Espinet P,et al.J.Am.Chem.Soc.,2010,132(4):1424-1431

[3]Ranford J D,Vittal J J,Wu D.Angew.Chem.Int.Ed.,1999,38:3498-3501

[4]Sharma C V K,Rogers R D.Chem.Commun.,1999,1:83-84

[5]Dietzel P D C,Morita Y,Blom R.et al.Angew.Chem.Int.Ed.,2005,44:1483-1492

[6]Li Y,Zheng F K,Liu X,et al.Inorg.Chem.,2006,45:6308-6316

[7]LI Jing(李靜),JI Chang-Chun(季長(zhǎng)春),WANG Zuo-Wei(王作為),et al.Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao),2009,25:2083-2089

[8]ZHU Ying-Gui(朱英貴),JU Xue-Hai(居學(xué)海),SONG Ying-Lin(宋瑛林),et al.Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao),2008,24(12):2029-2034

[9]Zhou X P,Xu Z T,Zeller M,et al,Chem.Commun.,2009:5439-5441

[10]Abuhmaiera R,Lan Y,Ako A M.et al.CrystEngComm,2009:1089-1096

[11]Carlin R L.Magnetochemistry.Berlin Heidelberg:Springer-Verlag Publisher,1986:3

[12]Sheldrick G M.SHELX-97,Program for the Solution and Refinement of Crystal Structures,University of G?ttingen,Germany,1997.

[13]Wei H,Wu G,Liu Z F.Chinese J.Struct.Chem.,2011,30:1257-1264

[14]Liu Y F,Xu X Y,Xia H T.Synth.React.Inorg.Met-Org.Chem.,2009,39:400-405

[15]Wu G,Wang X F,Guo L,et al.J.Chem.Crystallogr.,2011,41:1071-1076

[16]James W H,Wayne E M,Robert R W.et al.Inorg.Chem.,1981,20:1033-1037

[17]Chiari B,Piovesana O,Tarantelli T,et al.Inorg.Chem.,1993,32:4834-4838

Synthesis,Structure and Properties of a 1D Copper(Ⅱ)Coordination Polymer Constructed by α-Naphthylacetic Acid

YIN Fu-Jun1,2ZHAO Hong2XU Xing-You*,1,3YANG Xu-Jie1
(1School of Chemical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China)
(2Jiangsu Marine Resources Development Research Institute of Huaihai Institute of Technology,Lianyungang,Jiangsu 222005,China)
(3Huaiyin Insititute of Technology,Huai′an,Jiangsu 223003,China)

A copper(Ⅱ) coordination polymer,[Cu(NAA)2]n(HNAA=α-naphthylacetic acid)was synthesized and structurally characterized by means of X-ray single-crystal diffraction,IR spectrum and elemental analysis.It crystallizes in orthorhombic space group Pbcn with a=3.077 2(3),b=1.272 56(11),c=1.023 51(9)nm,V=4.008 0(6)nm3,Z=8.The coordination geometry of Cu(Ⅱ)is a distorted square-pyramid.Carboxylate groups take two kinds of bridging coordination modes: μ2-η1∶η1and μ3-η2∶η1,resulting in infinite zigzag 1D chains.These 1D chains are connected together to form layer and 3D stacking framework by C-H-π interactions between naphthyl rings.Magnetic measurement of the polymer shows that a strong antiferromagnetic coupling can be observed.The thermal stable property of the polymer was also investigated.CCDC:835977.

α-naphthylacetic acid;copper(Ⅱ) complex;synthesis;magnetic;thermal properties

O614.121

A

1001-4861(2012)08-1700-05

2011-11-18。收修改稿日期:2012-05-28。

江蘇省海洋資源開發(fā)研究院自然科學(xué)基金(No.JSIMR11B03)資助項(xiàng)目。

*通訊聯(lián)系人。E-mail:yfj1999@126.com

猜你喜歡
南京
南京比鄰
“南京不會(huì)忘記”
南京大闖關(guān)
江蘇南京卷
南京·九間堂
金色年華(2017年8期)2017-06-21 09:35:27
南京·鴻信云深處
金色年華(2017年7期)2017-06-21 09:27:54
南京院子
電影(2017年1期)2017-06-15 16:28:04
又是磷復(fù)會(huì) 又在大南京
南京:誠(chéng)實(shí)書店開張
南京、南京
主站蜘蛛池模板: 色噜噜中文网| 国产91视频观看| 亚洲精品成人福利在线电影| 欧美国产三级| 国产一区亚洲一区| 久久精品女人天堂aaa| 女人18毛片久久| 欧美精品三级在线| 色综合天天娱乐综合网| 日本国产精品一区久久久| 麻豆精品国产自产在线| 精品国产成人a在线观看| 国产高潮视频在线观看| 国产人成在线视频| 久久99精品久久久大学生| 国产成人精品在线| 国产乱子伦视频三区| 国产女人喷水视频| 中文字幕不卡免费高清视频| 波多野结衣一二三| 天天色天天综合网| 一本大道视频精品人妻| 九九热精品视频在线| 日本午夜精品一本在线观看| 国产美女在线观看| 亚洲免费播放| 日韩久久精品无码aV| 午夜限制老子影院888| 丁香五月亚洲综合在线| a网站在线观看| 免费在线成人网| 免费看久久精品99| 久久大香伊蕉在人线观看热2| 亚洲色图综合在线| 2021国产在线视频| 一级毛片基地| 日韩精品一区二区三区swag| 亚洲精品第1页| 91福利片| 亚洲一区二区三区麻豆| 久久男人视频| 不卡无码h在线观看| 18禁黄无遮挡网站| 欧美狠狠干| 五月激情综合网| 国产欧美日韩精品第二区| 亚洲精品无码久久毛片波多野吉| 亚洲综合色婷婷中文字幕| 91香蕉视频下载网站| 中文字幕在线播放不卡| 五月丁香伊人啪啪手机免费观看| 色老头综合网| 亚洲欧洲日产国产无码AV| 美女无遮挡拍拍拍免费视频| 国产精品一线天| 国产经典免费播放视频| 色综合中文| 日韩美毛片| 亚洲第一页在线观看| 丁香婷婷久久| 色悠久久久| 国产亚洲高清视频| 免费国产无遮挡又黄又爽| 精品无码一区二区三区在线视频| 欧美日本二区| 99re在线视频观看| 亚洲国产成人在线| 亚洲精品成人片在线观看| 国产99欧美精品久久精品久久| 手机精品福利在线观看| 五月天久久婷婷| 久99久热只有精品国产15| 久久99蜜桃精品久久久久小说| 国产精品欧美在线观看| 伊人AV天堂| 三区在线视频| 亚洲性日韩精品一区二区| 国产精品免费久久久久影院无码| 欧美一区二区自偷自拍视频| 国产网站一区二区三区| 亚洲人成影院午夜网站| 小13箩利洗澡无码视频免费网站|