999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于JRC-JCS模型的屈服接近度及地下工程圍巖穩定性分析方法

2012-11-05 07:25:02李文淵吳啟紅
巖土力學 2012年1期
關鍵詞:圍巖模型

李文淵,吳啟紅

(成都大學 城鄉建設學院,成都 610106)

1 引 言

隧道和地下工程圍巖穩定性是巖土工程的重要研究內容之一[1-2],以往通常是利用巖體分級、數值計算塑性區分布等方法進行判斷,只能判斷圍巖是否進入塑性狀態,不能反映圍巖的穩定情況。實際工程中,圍巖某些部位可能處于較危險狀態,但未進入塑性狀態,若不進行及時加固,在外界擾動下這些部位往往也會發生破壞,若提前進行有效加固,則可以改善圍巖的整體穩定性,因此有必要研究隧道及地下工程巖體各部位的穩定情況。一些學者意識到這個問題,引入點安全系數[3-5]和屈服接近度的概念[6-8]來評判巖土體各部位的安全狀況,如周輝和張傳慶等[6-8]提出了新的屈服接近度概念,根據圍巖中接近屈服面區域安全程度的差異,對非塑性區的危險程度進行研究,在經典塑性理論框架內定義了屈服接近度指標,并建立了相應于各種不同類型的屈服準則的屈服接近度求解函數。這些研究主要基于 Mohr-Coulomb和 Drucker-Prager等線性模型,對巖體穩定評價做出了有意義的貢獻,但巖體的非線性特征明顯[9-11],采用線性模型無法反映該特征,存在一定局限性,因此,需開發基于非線性模型的屈服接近度計算方法。對于節理巖體,普遍認為JRC-JCS模型能夠較好地描述節理巖體特征[12-14],若能建立該模型下的屈服接近度計算方法對地下工程圍巖穩定性進行評判,具有一定工程和理論意義。

本文首先推導了JRC-JCS模型下屈服接近度的計算公式,通過數值計算方法編制基于JRC-JCS模型的屈服接近度計算程序,并將結果與FLAC3D的結果進行對比,探討了各個參數對于屈服接近度的影響。

2 理論推導

張傳慶、周輝等[6-8]提出的屈服接近度 YAI定義廣義描述為:一點的現時狀態與相對最安全狀態的參量的比,0<YAI<1。相對于某一強度模型可表述為:空間應力狀態下的一點沿最不利應力路徑到屈服面的距離與相應的最穩定參考點在相同洛德角方向上沿最不利應力路徑到屈服面的距離之比,它能夠定量評價圍巖接近塑性屈服的程度。

式中:σ1、σ2、σ3分別為最大、中間和最小主應力(應力符號規定:拉為正,壓為負,σ1>σ2>σ3);α=sinφ/;γ=-ccosφ ,c、φ為黏聚力和內摩擦角;σπ、τπ為 π平面上的法向應力和剪應力分量,;I1為主應力第一不變量;J2為偏應力第二不變量;σL為實際抗拉強度;β=(cosθσ-sinθσsinφ/,θσ為應力Lode角,為理想抗拉強度;

圖1 摩爾圓應力分析Fig.1 Stress analysis of Mohr circle

為建立JRC-JCS模型中的屈服接近度,首先找出JRC-JCS模型參數和Mohr-Coulomb模型參數之間的關系。JRC-JCS模型是巴頓在大量節理剪切試驗基礎上提出的[12],公式為

式中:τ為節理剪切強度;σn為節理的正應力;φb為基本內摩擦角;JRC為節理粗糙度系數;JCS為巖體壓縮強度。

對于隧道及地下工程圍巖,可參考 Hoek的建議[15]得到法向應力的最大值:

式中:γ為巖體重度;H為地下工程埋深。

將式(4)、(5)代入式(1)、(2)即可得到JRC-JCS非線性準則下的屈服接近度YAIJJ計算公式為

3 算例分析

3.1 算例

某地下隧道直徑為12 m,埋深16 m,建立節理概化模型。模型尺寸為70 m ×55 m ×80 m,單元72000個,節點74431個,如圖2所示。邊界條件:底部和四周均采用法向位移約束,上部為自由邊界,初始應力場按自重應力考慮;計算收斂準則為不平衡力比率(節點平均內力與最大不平衡力的比值)滿足10-5的求解要求。圍巖采用JRC-JCS模型描述。計算參數:彈性模量E = 0.5 GPa,泊松比μ=0.25,重度γ= 26.0 kN/m3,φb= 30°。

強度參數設置 3個方案:① JCS=20 MPa,JRC=2;② JCS=30 MPa ,JRC=4;③JCS=40 MPa,JRC=10。剪切模量G和體積模量K通過式(10)計算。

數值計算過程中,根據彈性理論計算各個單元的應變及應力,代入強度模型進行判斷,若達到了屈服條件,則進行相應的應力調整,使應力滿足屈服函數。通過差分法計算,根據式(8)利用FISH語言編制相應的屈服接近度程序如圖3所示。

從圖3可以看出,由于隧道的開挖,導致巖體內的應力發生擾動,部分隧道圍巖出現屈服,對比屈服接近度云圖和 FLAC3D自身計算的塑性區分布看見出圖3(a)、3(b)中YAIJJ= 1的范圍與FLAC3D計算的塑性區分布范圍一致。對比兩個算例,驗證了本文所開發的屈服接近度程序的正確性,數值計算塑性區分布僅能表征該部位巖體是否屈服。實際工程中,受到外界擾動和外力作用情況下某些巖體處于危險狀態,但未達到屈服狀態,此時若不進行有效加固,則易在進一步擾動情況下發生破壞。屈服接近度能夠表征各部位巖體的破壞程度,可以根據其判別結果對某些數值范圍內的巖體進行加固,從而改善巖體的整體穩定性,因此屈服接近度程序的結果優于FLAC3D的計算結果,更加符合實際工程需要。

3.2 參數分析

選取隧道巖體中某單元的應力值σ1= 1.0 MPa,σ2= 0.6 MPa,σ3= 0.4 MPa,隧道埋深為16 m,γ=26.0 kN/m3,分別改變材料參數JCS和 JRC,分析參數對YAIJJ的影響。固定巖體的基本內摩擦角φ=30°,分別改變 JRC=2~18,JCS=5~105 MPa,得到圖 4~7。從圖 4~7中可以看出,隨著JCS和JRC的增大,巖體屈服接近度YAIJJ均逐漸減小,這是由于JRC越大,巖體節理面越粗糙,巖體的穩定性越高,而JCS越大,巖石顆粒排列的越緊密,巖體的壓縮強度越大,巖體的穩定性也越高,其中YAIJJ和JRC的關系呈現線性特征,可通過線性方程進行擬合,擬合結果均為高度相關;而YAIJJ和JCS的關系呈現非線性特征,采用指數方程進行擬合,擬合結果亦為高度相關。

圖5 不同JCS下YAIJJ和JRC的擬合關系Fig.5 Fitting relation between YAIJJand JRCunder different values of JCS

圖6 JCS對于YAIJJ的影響Fig.6 Effect of JCSon YAIJJ

4 結 論

(1)屈服接近度YAIJJ= 1的范圍與FLAC3D計算的塑性區分布表征的結果一致,驗證了自編程序的正確性。數值計算塑性區分布僅能表針該部位巖體是否破壞,而屈服接近度能夠表征各部位巖體的危險程度,可根據其判別結果對某些數值范圍內的巖體進行加固,從而改善巖體的整體穩定性。基于JRC-JCS模型的結果優于FLAC3D的計算結果,更加符合實際工程需要。

(2)隨著JCS和JRC的增大,巖體屈服接近度YAIJJ均逐漸減小,YAIJJ和JRC的關系呈線性特征,可通過線性方程進行擬合;YAIJJ和JCS的關系呈非線性特征,可采用指數方程進行擬合。

[1]SINGH M,SINGH B,CHOUDHARI J. Critical strain and squeezing of rock mass in tunnels[J]. Tunnelling and Underground Space Technology,2007,22(3): 343-350.

[2]吳啟紅,彭振斌,陳科平,等. 礦山采空區穩定性二級模糊綜合評判[J]. 中南大學學報(自然科學版),2010,41(2): 661-667.WU Qi-hong,PENG Zhen-bin,CHEN Ke-ping,et al.Synthetic judgment on two-stage fuzzy of stability of mine gob area[J]. Journal of Central South University(Science and Technology),2010,41(2): 661-667.

[3]沈可,張仲卿. 三維抗滑穩定分析中的點安全系數法[J]. 人民珠江,2003,(2): 21-22.SHEN Ke,ZHANG Zhong-qing. Point safety factor method for 3-dimensional stability analysis[J]. Pearl River,2003,(2): 21-22.

[4]藍航. 基于FLAC3D的邊坡單元安全度分析及應用[J].中國礦業大學學報,2008,37(4): 570-574.LAN Hang. Analysis of zone safety degree of slopes and its application based on FLAC3D[J]. Journal of China University of Mining & Technology,2008,37(4): 570-574.

[5]李樹忱,李術才,徐幫樹. 隧道圍巖穩定分析的最小安全系數法[J]. 巖土力學,2007,28(3): 549-554.LI Shu-chen,LI Shu-cai,XU Bang-shu. Minimum safety factor method for stability analysis of surrounding rock mass of tunnel[J]. Rock and Soil Mechanics,2007,28(3):549-554.

[6]周輝,張傳慶,馮夏庭,等. 隧道及地下工程圍巖的屈服接近度分析[J]. 巖石力學與工程學報,2005,24(17):3083-3087.ZHOU Hui,ZHANG Chuan-qing,FENG Xia-ting,et al.Analysis of rock mass stability in tunnel and underground engineering based on yield approach index[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(17): 3083-3087.

[7]張傳慶,周輝,馮夏庭. 基于破壞接近度的巖土工程穩定性評價[J]. 巖土力學,2007,28(5): 888-894.ZHANG Chuan-qing,ZHOU Hui,FENG Xia-ting.Stability assessment of rockmass engineering based on failure approach index[J]. Rock and Soil Mechanics,2007,28(5): 888-894.

[8]張傳慶,周輝,馮夏庭,等. 基于屈服接近度的圍巖安全性隨機分析[J]. 巖石力學與工程學報,2007,26(2):292-299.ZHANG Chuan-qing,ZHOU Hui,FENG Xia-ting,et al.Stochastic analysis method on safety of surrounding rock mass based on yielding approach index[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(2): 292-299.

[9]林杭,曹平,趙延林,等. 強度折減法在 Hoek-Brown準則中的應用[J]. 中南大學學報,2007,38(6): 1219-1224.LIN Hang,CAO Ping,ZHAO Yan-lin,et al. The application of strength reduction method in Hoek-Brown criterion[J]. Journal of Central South University(Science and Technology),2007,38(6): 1219-1224.

[10]林杭,曹平,李江騰,等. 基于 Hoek-Brown準則的三維邊坡變形穩定性分析[J]. 巖土力學,2010,31(11):3656-3660.LIN Hang,CAO Ping,LI Jiang-teng,et al. Deformation stability of three dimensional slope based on Hoek-Brown criterion[J]. Rock and Soil Mechanics,2010,31(11):3656-3660.

[11]蔣青青. 基于 Hoek-Brown 準則點安全系數的邊坡穩定性分析[J]. 中南大學學報,2009,40(3): 786-790.JIANG Qing-qing. Stability of point safety factor of slope based on Hoek-Brown criterion[J]. Journal of Central South University,2009,40(3): 786-790.

[12]BARTON N,CHOUBEY V. The shear strength of rock joints in theory and practice[J]. Rock Mechanics,1977,(10): 1-54.

[13]CHOI S O,CHUNG K. Stability analysis of jointed rock slopes with the Barton constitutive model in udec[J].International Journal of Rock Mechanics and Mining Sciences,2004,41(Supp. 1): 581-586.

[14]FOTOOHI K,MTTRI H S. Non-linear fault behaviour near underground excavations—A boundary element approach[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1998,20(3): 173-190.

[15]HOEK E,CARRANZA-TORRES C,CORKUM B.Hoek-Brown failure criterion(2002 edition)[C]//Proc.NARMS-TAC Conference. Toronto: [s. n.],2002: 267-273.

猜你喜歡
圍巖模型
一半模型
重要模型『一線三等角』
重尾非線性自回歸模型自加權M-估計的漸近分布
隧道開挖圍巖穩定性分析
中華建設(2019年12期)2019-12-31 06:47:58
軟弱破碎圍巖隧道初期支護大變形治理技術
江西建材(2018年4期)2018-04-10 12:37:22
3D打印中的模型分割與打包
復雜巖層大斷面硐室群圍巖破壞機理及控制
煤炭學報(2015年10期)2015-12-21 01:55:09
滑動構造帶大斷面弱膠結圍巖控制技術
山西煤炭(2015年4期)2015-12-20 11:36:18
采空側巷道圍巖加固與巷道底臌的防治
FLUKA幾何模型到CAD幾何模型轉換方法初步研究
主站蜘蛛池模板: 国产超薄肉色丝袜网站| 精品国产www| 国产av无码日韩av无码网站 | 国产区91| 国产精品久久久久无码网站| 国产av剧情无码精品色午夜| 亚洲精品爱草草视频在线| 国产精品一线天| 无码 在线 在线| 国内精品一区二区在线观看| www亚洲天堂| 日韩欧美亚洲国产成人综合| 天天躁夜夜躁狠狠躁图片| 国产精品所毛片视频| 亚洲91在线精品| 国产欧美日韩综合在线第一| P尤物久久99国产综合精品| 亚洲首页在线观看| 亚洲最大综合网| 亚洲综合中文字幕国产精品欧美 | 在线观看国产精品日本不卡网| a欧美在线| 国产农村妇女精品一二区| 国产在线第二页| 成人综合网址| 99r在线精品视频在线播放| 久久久久无码精品国产免费| 国产偷国产偷在线高清| 一级毛片中文字幕| 国产成人亚洲精品色欲AV| 国产成人免费高清AⅤ| 国产三级国产精品国产普男人| 国产午夜一级淫片| 97人妻精品专区久久久久| 欧美精品一区在线看| 欧美翘臀一区二区三区| 波多野结衣一区二区三区88| 3344在线观看无码| 国产福利不卡视频| 国产精品 欧美激情 在线播放| 日韩一级二级三级| 欧美不卡在线视频| 精品少妇人妻av无码久久| 国产美女精品在线| 青青草91视频| 国产成人亚洲欧美激情| 欧美精品黑人粗大| 尤物国产在线| 日韩欧美国产三级| 成人av手机在线观看| 亚洲a级在线观看| 99国产在线视频| 国产浮力第一页永久地址| 日韩中文字幕亚洲无线码| 国产女人在线视频| 久久公开视频| 成色7777精品在线| 亚洲最大福利网站| 成人久久精品一区二区三区| 永久免费无码成人网站| 欧美乱妇高清无乱码免费| 中文字幕无线码一区| 国产偷国产偷在线高清| 中文字幕精品一区二区三区视频| 一本久道久综合久久鬼色| 亚洲伊人电影| 日本少妇又色又爽又高潮| 美女一级毛片无遮挡内谢| 污网站免费在线观看| 国产精品久久国产精麻豆99网站| 激情亚洲天堂| 亚洲娇小与黑人巨大交| 2019年国产精品自拍不卡| 人与鲁专区| 波多野结衣的av一区二区三区| 女人av社区男人的天堂| 亚洲人成网线在线播放va| 在线欧美日韩国产| 国产天天色| 久夜色精品国产噜噜| 天天色综网| 成人国产免费|