摘要:能否選擇和掌握最佳的學習方法,是取得最好學習效果的關鍵。連接體問題是高中常見的一類問題。在這類問題中,若能用整體法解決此類問題,方法會很簡單,起到事半功倍的效果。
關鍵詞:連接體; 整體法
連接體問題是高中常見的一類問題。在這類問題中,理論中上隔離法都能解決但有時解法會很麻煩,易出錯。如果我們能用整體法解決此類問題,方法會很簡單,在考試中為我們節約寶貴的時間。整體法我們可以分為兩類。
類型一:連接體中各物體具有相同的運動狀態
所謂相同的運動狀態是指連接體中各物體具有相同的加速度。(一個物體勻速運動,一個物體靜止也可認為運動狀態相同,加速度都是零)
例1如圖1所示,質量為m=5kg的物體置于一粗糙的斜面體上,用一平行于斜面的大小為30N的力F拉物體,使物體沿斜面向上勻速運動,斜面體質量為M=10kg,且始終靜止。取g=10m/s2,求地面對斜面體的摩擦力大小及支持力大小。
解析:方法一,采用隔離法:對物體逐個隔離分析,m受力如圖2
對M受力分析如圖3, 根據牛頓第二定律得:
根據牛頓第三定律知:
方法二,采用整體法:由于物體沿斜面向上勻速運動,斜面靜止,所以可以把物體和斜面視為一整體,受力分析如圖4對整體,由平衡條件得:
所謂不同的運動狀態是指連接體中各物體具有不同的加速度。
方法:對整體受力分析,整體受到的合外力分別為各個物體提供加速度。即:合外力等于各個物體的質量與各自加速度乘積的矢量和。
例2如圖5,一個箱子放在地面上箱內有一固定的豎直桿,在桿上套著一個環,箱質量M,環質量m。已知環沿桿勻加速下滑石,加速度為a,求此時箱子對地面的壓力大小?
分析:方法一:采用隔離法
以m為研究對象受力分析如圖6,受到重力、摩擦力,根據牛頓第二定律得:
以M為研究對象受力分析如圖7:受到重力Mg、地面的支持力N、m對M摩擦力f’
根據牛頓第二定律得:
根據牛頓第三定律知:
根據牛頓第三定律得箱子對地面的壓力為:
方法二:整體法去箱子和環整體為研究對象,受力分析:
重力Mg+mg、地面的支持力N
根據牛頓第二定律得:
根據牛頓第三定律:得箱子對地面的壓力為:
練一練:
如圖所示,在傾角為α的固定光滑斜面上,有一用繩子拴著的長木板,木板上站著一只貓。已知木板的質量是貓的質量的2倍。當繩子突然斷開時,貓立即沿著板向上跑,以保持其相對斜面的位置不變。則此時木板沿斜面下滑的加速度為( )。
A. g2sin a Bsina. C32sina. D2gsina
(參考答案)當繩子突然斷開時,雖然貓和木板不具有相同的加速度,但仍可以將它們看作一個整體。分析此整體沿斜面方向的合外力,貓相對于斜面靜止,加速度為0。
對整體可列出牛頓運動定律的表達式為
(M+m)gsin a=Ma+0式中M=2m,因此木板的加速度a=32gsin a
通過上面的例題,我們可以看出整體法相對隔離法的優勢,通過整體法分析物理問題,可以弄清系統的整體受力情況和全過程的受力情況,從整體上揭示事物的本質和變體規律,從而避開了中間環節的繁瑣推算,能夠靈活地解決問題。但整體法也不是萬能的,例如如果題目要求求連接體重各物體間的相互作用時。在物理學習中,我們要多思考,盡可能找簡便方法,這樣不但可以為我們節約時間,同時也會讓我們的思路得以拓寬,愛上物理。