999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Ground states for asymptotically periodic quasilinearSchr?dinger equations with critical growth

2013-02-18 22:53:38ZhangHuiZhangFubao

Zhang Hui Zhang Fubao

(Department of Mathematics, Southeast University, Nanjing 211189, China)

1 Introduction and Statement of Main Result

As the models of physical phenomena, the quasilinear Schr?dinger equation

(1)

has been extensively studied in recent years. For the detailed physical applications, one can see Ref.[1].

Inspired by Refs.[4-5], we are interested in the existence of ground states for asymptotically periodic quasilinear Schr?dinger equation (1). We consider

-Δu+V(x)u-uΔ(u2)=K(x)|u|22*-2u+g(x,u)

u∈H1(RN)

(2)

LetFbe a class of functionsh∈C(RN)∩L∞(RN), such that for every>0 the set {x∈RN:|h(x)|≥} has a finite Lebesgue measure. Suppose thatV,K∈C(RN) satisfies the following conditions:

H1) There exists a constanta0>0 and a functionVp∈C(RN), 1-periodic inxi, 1≤i≤N, such thatV-Vp∈FandVp(x)≥V(x)≥a0,x∈RN.

H2) There exists a functionKp∈C(RN), 1-periodic inxi, 1≤i≤N, and a pointx0∈RNsuch thatK-Kp∈Fand

①K(x)≥Kp(x)>0,x∈RN;

②K(x)=|K|∞+O(|x-x0|N-2), asx→x0.

H3)g(x,u)=o(u) uniformly inxasu→0;

H4) |g(x,u)|≤a(1+|u|q-1), for somea>0 and 4≤q<22*;

H6) There exists a neighborhood ofx0given by H2),Ω?RN, such that

H7) There exists a constantq1∈(2,22*), functionsh∈Fandgp∈C(RN×R,R) such that

①gpis 1-periodic inxi,1≤i≤N;

② |g(x,u)-gp(x,u)|≤|h(x)|(|u|+|u|q1-1),x∈RN;

Theorem1If H1) to H7) hold, then the problem (2) has a ground state.

Remark1H3) and H5) imply that

(3)

2 Variational Setting

is not well defined inH1(RN). Choose the changefdefined by

f(t)=-f(-t) on (-∞,0]

and setv=f-1(u), then we obtain

which is well defined inH1(RN) by the properties off(see Ref.[5]). The critical points ofIare weak solutions of

-Δv+V(x)f′(v)f(v)=K(x)|f(v)|22*-2f(v)f′(v)+g(x,f(v))f′(v)v∈H1(RN)

(4)

Similar to Ref.[5], we first prove that there is a nontrivial solution for Eq.(4). We know that the results obtained under (V), (K), (g1), (g2) and (g5) in Ref.[5] still hold since the conditions H1) to H4) and H6) are the same as (V), (K), (g1), (g2) and (g5), respectively. However, H5) and H7) are different from (g3) and (g4) in Ref.[5]; in the following, we verify whether the results under (g3) and (g4) still hold.

Lemma1Let H1) to H5) hold. Then, the (Ce)b(b>0) sequencevnofIsatisfying

I(vn)→b, =I′(vn)=(1+=vn=)→0

(5)

is bounded.

By (5), we have

I1+I2+I3

(6)

By Lemma 1 (8) in Ref.[5], we obtain

(7)

ForI3, using Lemma 1 (8) in Ref.[5] and inequality (3), we have

In Ref.[5], the authors supposed that |g(x,u)-gp(x,u)|≤h(x)|u|q3-1,q3∈[2,22*), and we assume that |g(x,u)-gp(x,u)|≤h(x)(|u|+|u|q1-1),q1∈(2,22*). So Lemma 9 in Ref.[5] holds under H1), H2) and H7). Following the outline in Ref.[5], we have the following lemma.

In order to find ground states, we also need to introduce the Nehari manifold. The Nehari manifold corresponding to Eq.(4) is

M={u∈H1(RN){0}: 〈I′(u),u〉=0}

First, we give the following lemma in which the simple proof is left to the reader.

Lemma3Let H1) to H5) hold. ThenI(tu)→-∞ ast→∞,u∈H1(RN){0}.

Inspired by Ref.[6], we have

Note that

t(|v+Φ1(t)+Φ2(t)+Φ3(t))

By Lemma 1 (8) in Ref.[5] and the fact thatf″(tv)=-2f(tv)f′4(tv), we obtain

2f2(tv)f′4(tv)tv2-f(tv)f′(tv)v]V(x)<0

SoΦ1is decreasing.

(8)

Lemma5Let H1) to H6) hold. Thenc*≥c.

3 Proof of Theorem 1

ProofBy Lemma 2, we assume that there is a nontrivial solutionwwithI(w)=c. Thenw∈M. SoI(w)≥c*. Note thatI(w)=candc*≥c, and we obtainI(w)≤c*. SoI(w)=c*. Then we can easily infer thatwis a ground state for Eq.(4). We complete the proof.

[1]Kurihara S. Large-amplitude quasi-solitons in superfluid films [J].JournalofthePhysicalSocietyofJapan, 1981,50(10): 3262-3267.

[2]Liu J, Wang Z. Soliton solutions for quasilinear Schr?dinger equations Ⅰ [J].ProceedingsoftheAmericanMathematicalSociety, 2003,131(2): 441-448.

[3]Liu J, Wang Y, Wang Z. Solutions for quasilinear Schr?dinger equations via the Nehari method [J].CommunicationsinPartialDifferentialEquations, 2004,29(5/6): 879-901.

[4]Liu X, Liu J, Wang Z. Ground states for quasilinear Schr?dinger equation with critical growth [J].CalculusofVariationsandPartialDifferentialEquations, 2013,46(3/4): 641-669.

[5]Silva E A B, Vieira G F. Quasilinear asymptotically periodic elliptic equations with critical growth [J].CalculusofVariationsandPartialDifferentialEquations, 2012,39(1/2): 1-33.

[6]Szulkin A, Weth T. The method of Nehari manifold [C]//HandbookofNonconvexAnalysisandApplications. Boston, USA: International Press, 2010: 597-632.

[7]Do J M, Miyagaki O H, Soares S H M. Soliton solutions for quasilinear Schr?dinger equations with critical growth [J].JournalofDifferentialEquations, 2010,248(4): 722-744.

[8]Silva E A B, Vieira G F. Quasilinear asymptotically periodic Schr?dinger equations with subcritical growth [J].NonlinearAnalysis:Theory,MethodsandApplications, 2010,72(6): 2935-2949.


登錄APP查看全文

主站蜘蛛池模板: 日韩午夜伦| 国产精品毛片一区| 久久一本精品久久久ー99| 国产精品播放| 午夜福利网址| 永久在线精品免费视频观看| 精品无码国产自产野外拍在线| 国产91特黄特色A级毛片| 91九色视频网| 亚洲综合久久一本伊一区| 亚洲免费毛片| 一级在线毛片| 欧美一区二区三区国产精品| 国产靠逼视频| 少妇精品久久久一区二区三区| 国产精品一区在线观看你懂的| 国产成人8x视频一区二区| 国产成人精品午夜视频'| 色爽网免费视频| 亚洲欧美成人在线视频| 亚洲人成影院午夜网站| 91成人试看福利体验区| 亚洲欧美极品| 亚洲黄网视频| 秋霞一区二区三区| 91在线免费公开视频| 热久久这里是精品6免费观看| 综合久久久久久久综合网| 成人精品亚洲| 久久香蕉国产线看精品| 国内精品视频区在线2021| 亚洲国产精品无码久久一线| 亚洲综合经典在线一区二区| 丁香婷婷久久| 午夜免费视频网站| 香蕉网久久| 久久先锋资源| 热伊人99re久久精品最新地| 国产美女一级毛片| 国产亚洲男人的天堂在线观看| 呦视频在线一区二区三区| 99re在线视频观看| 中国毛片网| 亚洲伊人天堂| 幺女国产一级毛片| 欧美亚洲网| 久久semm亚洲国产| 久久免费视频6| 激情综合五月网| 久久成人国产精品免费软件| 不卡午夜视频| 青青操国产视频| 午夜精品久久久久久久99热下载 | 欧美日韩国产在线观看一区二区三区| 日韩激情成人| 亚洲AV无码一区二区三区牲色| 中文字幕欧美日韩高清| 婷婷激情五月网| 99久久国产精品无码| 国产在线一区二区视频| 亚洲人成网7777777国产| 日韩午夜福利在线观看| 毛片大全免费观看| 无码一区18禁| 欧美精品亚洲精品日韩专区| 亚洲av日韩av制服丝袜| 久久无码高潮喷水| 又爽又黄又无遮挡网站| 精品第一国产综合精品Aⅴ| 伊人久热这里只有精品视频99| 免费国产不卡午夜福在线观看| 午夜福利无码一区二区| 无码又爽又刺激的高潮视频| 无码福利日韩神码福利片| 日韩国产无码一区| 国产成人精品18| 中文天堂在线视频| 国产精品v欧美| 国产第一色| 九色综合视频网| 国产精品欧美在线观看| 激情乱人伦|