萬文斌,夏世金,劉露梅,李亞明*
(1.復旦大學附屬華東醫院中醫科,上海 200040;2.復旦大學附屬華東醫院上海市老年醫學研究所,上海 200040)
阿爾茨海默病(Alzheimer’s disease,AD)是老年癡呆的最常見類型,腦內β-淀粉樣蛋白(βamyloid protein,Aβ)沉 積 形 成 老 年 斑 (senile plaques,SPs)和過度磷酸化tau蛋白形成神經纖維纏結(neurofibrillary tangles,NFT)是 AD的特征性病理變化[1]。越來越多的證據顯示,Aβ損傷腦血管內皮細胞(endothelial cells,ECs)而引起血腦屏障(blood-brain barrier,BBB)破壞可能是 AD 新的特征性病理改變[2,3],因為90%以上的 AD患者均存在BBB損傷[4]。然而Aβ損傷ECs引起BBB破壞的機制尚不清楚[1-4]。
近年來學者們開始認識到散發型/晚發性AD(sporadic/late-onset AD,SAD/LOAD)與腦內 Aβ清除減少有關[5]。腦內Aβ清除途徑主要包括細胞外降解、細胞吞噬消化及經BBB轉運清除[4]。晚期糖化終產物受體(receptor for advanced glycation end-products,RAGE)是 BBB上參與 Aβ轉運的重要載體[6],生理條件下 RAGE和低密度脂蛋白受體相關蛋白-1(LDH receptor related protein-1,LRP-1)協調作用維持腦組織Aβ在正常水平,但在AD中,RAGE表達明顯上調,RAGE轉運大量Aβ入腦[6]。RAGE能介導Aβ的神經毒性,又能通過正反饋機制上調自身表達使Aβ入腦沉積而促進AD發病[7],可見RAGE在AD發病中的重要作用。本文就BBB-RAGE在AD發病中的作用進行綜述,以探討RAGE介導Aβ損傷BBB結構完整性的可能機制,以期成為干預Aβ損傷BBB的新靶點。
BBB由腦微血管內皮細胞(brainmicrovascular endothelial cells,BMECs)、星 形 膠 質 細 胞(Astrocyte,AS)及周細胞(Pericyte)共同組成[8-10],是機體最重要的內部屏障之一[8]。緊密連接(tight junction,TJ)是BMECs的主要特征結構,是BBB結構完整性(BBB structural integrity)的重要結構基礎,在保持黏膜上皮的物理屏障功能和通透性方面起到了極為重要的作用[11]。整合膜蛋白Claudin、閉鎖蛋白Occludin及連接粘附分子(junction adhesive molecule,JAM)3種跨膜蛋白通過胞質附著蛋白 Zonula Occluden-1,2,3(ZO-1,2,3)與骨架蛋白 Actin連接構成 TJ系統[11-13]。分子生物學研究已證實TJ在BBB通透性調節的中心作用,AD、腦卒中、蛛網膜下腔出血等病變均存在BBB結構破壞[14-16]。BBB結構完整性與TJ正常組合開放及關閉有關,TJ蛋白異常或結構重排均能引起 TJ結構改變[14-16]。
BBB保證了腦組織免于外周血液循環中毒性物質的損害,維持腦組織內環境穩態[8]。Aβ沉積在腦血管系統形成腦淀粉樣血管病(cerebral amyloid angiopathy,CAA)[4],引起神經血管功能障礙而出現認知減退及神經退行性變,因此學者們提出了AD的神經血管假說[17-19],認為 BBB對 Aβ轉運清除能力下降導致腦內Aβ沉積,引起血管功能紊亂、神經血管解耦連、血管退化、腦血流灌注不足及神經血管炎癥。Aβ損傷ECs,降低TJ蛋白含量,破壞BBB上 TJ系 統[20-22],AD 患 者 BBB 上 TJ損 傷,Claudin-1、Claudin-5明顯減少[2]。因此認為,Aβ對內皮細胞的毒性作用引起TJ損傷而破壞BBB結構完整性。
腦內Aβ清除途徑主要包括膠質細胞吞噬消化[23]、腦間質液(interstitialfluid,ISF)中 Aβ降解酶(Aβ-degrade enzymes,ADEs)水解[24]及BBB對 Aβ的轉運清除[25]。生理條件下ISF中ADEs只能清除腦內Aβ的10%~15%,膠質細胞的吞噬消化作用也相對有限,大部分Aβ通過BBB轉運途徑清除[25]。
對 Aβ 轉 運 體 的 研 究 發 現[26,27],LRP-1 和RAGE對Aβ均有很強的轉運能力,LRP-1將ISF中Aβ轉運至外周循環,而RAGE則將血液中的Aβ轉運至ISF。LRP-1介導ECs以內吞或轉胞吞的方式將Aβ跨過BBB排入外周循環,LRP-1異常導致Aβ外排減少,引起Aβ沉積[26]。據估算,若終止Aβ內向轉運,經LRP-1外向運輸1min可清除腦內幾乎所有生理水平的 Aβ[26],因此,如果上調LRP-1表達能促進Aβ外排,減少腦內Aβ沉積。BBB上的另一個Aβ轉運載體RAGE可在納摩爾水平結合外周循環中的 Aβ,并將其轉運入腦[27,28]。阻斷 Aβ外向轉運,經RAGE內向轉運40min后腦內可溶性Aβ將全部被外周循環中的Aβ充滿[29]。生理條件下,LRP-1和RAGE協同作用維持腦內Aβ的正常水平,但在 AD中,BMECs上RAGE表達明顯上調[30,31]。RAGE表達上調能增加外周循環中的Aβ入腦,促進腦內Aβ沉積,可見RAGE對Aβ轉運在AD發病中有重要作用。此外,BBB上P-糖蛋白(P-glycoprotein,P-gp)也參與了 Aβ轉運,P-gp將腦內Aβ透過 BBB 轉運至外周[32,33],但與 LRP-1相比,P-gp對Aβ的轉運作用較弱。也有認為P-gp的作用是協助LRP-1對 Aβ的轉運,LRP-1負責將ISF中Aβ轉運入BMECs,P-pg則調節Aβ從BMECs中轉運至外周循環的過程[6,33]。
RAGE是晚期糖化終末產物(advanced glycation end-products,AGEs)的一種特征性細胞表面受體,屬于免疫球蛋白超家族成員,在單核細胞、血管內皮細胞、神經元及膠質細胞均有表達[28,34]。RAGE除與 AGEs結合外還能與 Aβ、高速泳動族盒蛋白-1(High mobilitygroup box 1,HMGB-1)、S100/鈣粒蛋白家族等配體結合調節細胞病理生理反應[34]。近年研究[30]發現,Aβ能上調腦內RAGE水平,并能通過RAGE活化細胞內信號通路,引起氧化應激、炎癥損傷。因此,RAGE不僅能通過轉運Aβ入腦促進Aβ沉積[27,28],還能激活炎癥反應損傷腦組織而促進AD發病[30]。健康成人腦組織僅表達極少量的RAGE,但在AD中,RAGE的分布范圍擴大并且表達明顯上調[28]。AD大腦海馬、額葉、齒狀回及顳葉RAGE表達均有明顯增加,而在 Aβ沉積少、神經炎癥輕的小腦,RAGE的表達未見明顯變化[35]。Aβ與RAGE結合促進活性氧(reactive oxygen species,ROS)生成、激活炎癥反應,并通過激活核轉錄因子-κB(nuclear factor-κB,NF-κB)形成一種正反饋,促進更多的RAGE表達,進一步加重神經炎癥損傷效應[36,37]。
小膠質細胞(microglia)是腦內主要的免疫細胞,生理狀態下,RAGE、CD47等膜表面受體在小膠質細胞吞噬消化Aβ過程中發揮作用,對神經細胞有保護作用。但在AD中,Aβ含量增加超過了小膠質細胞的吞噬清除能力,相反,Aβ與RAGE結合激活細胞內信號轉導通路,小膠質細胞通過釋放大量促炎癥因子損傷神經元,破壞腦內環境穩定,同時Aβ-RAGE又能激活NF-κB,上調RAGE表達,形成炎癥損傷正反饋效應[36-39]。在BBB上,RAGE表達增加,血中Aβ經RAGE轉運入腦,加重了Aβ沉積,同時Aβ又能促進RAGE進一步表達增加并能損傷內皮細胞 TJ,破壞BBB[29-31]。
BBB上RAGE與Aβ相互作用活化細胞內信號轉導通路引起細胞損傷,并通過激活NF-κB正反饋上調RAGE表達,進一步促進Aβ入腦沉積及細胞損傷,破壞 BBB-TJ[36,37]。目 前 RAGE 介導 Aβ破壞BBB的機制仍不清楚,可能與MAPKs、Ca2+、炎癥損傷信號途徑等有關[40,41]。
病理條件下,基質金屬蛋白酶 (matrix met alloproteinases,MMPs)能通過降解細胞外基質(extracellular matrix,ECM)促進動脈粥樣硬化、腫瘤浸潤和轉移,以及AD、腦梗死、多發性硬化等疾病的發生發展[42]。研究[40]證實,BBB通透性增加與MMPs表達增加有關,而抑制MMPs基因后表現出對大腦的保護作用,且主要是降低BBB通透性。腦缺血動物腦內ZO-1減少了近30%,Claudin-5、Occludin含量也明顯減少,MMP-9基因敲除后ZO-1未見明顯變化[43,44]。置于脈沖電磁場(Pulsed Electromagnetic Field,PEMF)的小鼠腦血管內皮細胞 MMP-2、MMP-9增加,ZO-1明顯減少,TJ結構損傷[45],可見MMPs在TJ損傷中的作用。
最近有文獻[2]報道,AD患者BBB通透性增加,ECs MMP-2、MMP-9表達顯著,Claudin-1、Claudin-5表達減少。Aβ-RAGE相互作用能增加內皮細胞MMP-2、MMP-9表達,減少Claudin-1、Claudin-5含量,損傷 TJ結構[2,46],而阻斷 Aβ與 RAGE結合能抑制Aβ誘導的大腦內皮細胞 MMPs表達[46]。可見,Aβ 損 傷 BBB 可 能 與 RAGE 誘 導 MMP-2/MMP-9表達增加有關,但調控機制尚不清楚。細胞 外 信 號 調 節 激 酶 (extracellular-signal-regulated kinases,ERK),c-Jun-氨 基 末 端 激 酶 (c-Jun N-terminal kinase,JNK)及p38-絲裂原活化蛋白激酶(p38-mitogen-activated protein kinases,p38-MAPKs)等絲裂原活化蛋白激酶(mitogenactivated protein kinases,MAPKs)途徑是重要的細胞信號轉導通路[47,48]。一項AGEs損傷 HaCaT角質細胞的研究[47]發現,AGEs能上調HaCaT角質細胞表達 MMP-9,利用基因干擾技術明確了RAGE在AGEs誘導MMP-9表達中的關鍵作用,進一步研究證實MAPKs信號轉導通路參與了這一過程,因為ERK1/2及p38-MAPK拮抗劑能抑制MMP-9表達。另一項關于蛛網膜下腔出血的研究[48]發 現,JNK 抑 制 劑 能 通 過 增 加 Clautin-5 和ZO-1表達而保護BBB免受損傷。可見,MAPKs可能參與了BBB損傷過程,MMPs可能參與了其下游調控過程。
TJ信號調節以Ca2+調節為主,還包括膠質細胞調節、磷酸化調節及蛋白激酶C(protein kinase C,PKC)調節等方式,調控 TJ的形成與分解[41]。Ca2+參與了各種細胞間連接的形成,對TJ正常功能的維持有重要作用[41]。胞外低濃度Ca2+干擾細胞TJ形成,增加Ca2+濃度可誘導TJ重新形成[49,50]。研究[41]證 實,胞 外 Ca2+對 TJ的 影 響 與PKC和蛋白激酶A(protein kinase A,PKA)信號通路有關,因為低Ca2+對TJ的影響可通過PKC的活化及PKA的抑制而得以改善,而胞內Ca2+是通過改變ZO-1/Actin的結合并改變細胞內Occludin的位置影響TJ形成。Aβ能直接或間接引起Ca2+向胞質內流[51],Ca2+濃度改變影響TJ的形成或導致結構穩定性破壞[41],因此RAGE誘導Aβ損傷TJ也可能與改變Ca2+濃度有關。鈣調磷酸酶(Calcineurin,CaN)是 唯 一 受 Ca2+/鈣 調 素(Calmodulin,CaM)調節的絲氨酸/蘇氨酸蛋白質磷酸酶。體外實驗發現,Aβ損傷TJ蛋白,增加BBB通透性,并能增加內皮細胞Ca2+濃度,抑制RAGE或CaN活性,能阻斷Aβ誘導的TJ損傷,改善BBB通透性[52]。因此,Ca2+可能也參與了BBB的損傷,CaN作為Ca2+/CaM信號通路的重要磷酸酶在Aβ-RAGE損傷TJ中有重要作用。
Aβ作為配體識別RAGE的胞外V域,激活細胞內信號轉導途徑,一方面激活NADPH氧化酶途徑產生ROS,另一方面激活NF-κB,引起內皮素因子-1(endothelin-1,ET-1)、促炎癥細胞因子白介素-1β(Interleukin-1β,IL-1β)、IL-6、腫 瘤 壞 子 因 子-α(tumor necrosis factor-α,TNF-α)表達增加,同時NF-κB的活化又能上調RAGE表達而形成炎癥損傷的正 反饋效 應[36-39]。因此,Aβ與 RAGE 相互作用觸發ROS生成并激活炎癥通路,損傷腦組織從而促進AD發病。NF-κB的激活作為一種正反饋促進RAGE表達上調,同時ROS的生成也會放大受體的生成和加重炎癥過程,引起持久的神經炎癥反應,造成內皮細胞損傷凋亡,最終破壞BBB結構完整性,ET-1使腦血流(cerebral blood flow,CBF)降低并能促進腦血管重構[28,35,53],參與 Aβ引起的 CAA形成[4]。
Aβ神經毒性損傷是破壞BBB結構完整性,促進AD發病的重要因素,但其機制尚未明確[1]。RAGE拮抗劑抑制Aβ誘導的NF-κB激活,并可能阻斷細胞炎癥激活[28]。在RAGE基因敲除小鼠腦中也未檢測到Aβ跨過BBB入腦,而給予外源性Aβ后只能檢測到微量的炎癥反應[25]。
RAGE介導Aβ的神經毒性提示RAGE是促進AD病理進展的關鍵因子,因為抑制RAGE的作用能阻斷Aβ引起的細胞信號轉導通路活化[52],因此RAGE可能成為新的AD治療靶點。基于RAGE在AD發病中的重要作用,通過降低RAGE表達、抗體封閉RAGE蛋白、藥物競爭性阻斷RAGE與Aβ結合的信號通路,將可能阻斷 Aβ-RAGE對細胞的損傷效應。RAGE活性拮抗劑或RAGE基因敲除能減緩動物神經退行性病變進程,抑制慢性炎癥及氧化應激產物形成[27,28]。最近,RAGE-Aβ結合競爭性抑制劑PF-04494700被證實對治療輕中度AD有效,并已用于Ⅱ期臨床實驗,但因大劑量時出現不良反應而被中止。隨訪發現,小劑量使用的AD患者未見明顯不良反應,雖然已停用PF-04494700,但隨訪6個月后患者認知水平較用藥前及停藥前均有提高[54-56]。
可溶性 RAGE(soluble RAGE,sRAGE)是RAGE的一種亞型,AD早期患者血清中sRAGE濃度明顯降低,因此sRAGE可能成為AD診斷的標志物[57]。sRAGE不能穿過BBB,可作為誘餌受體與外周循環Aβ結合形成sRAGE-Aβ復合物,阻止Aβ入腦而影響AD病情發展[57]。給AD小鼠靜脈注射sRAGE,3個月小鼠海馬Aβ減少了70%,小鼠空間識別與學習能力也明顯高于對照組[58]。
除RAGE活性抑制及誘餌受體外,中藥對RAGE也有良好的干預作用。銀杏葉提取物EGb761能降低BMECs的RAGE表達,減少RAGE介導的Aβ轉運入腦[59]。體外實驗也證實,EGb761能抑制RAGE mRNA及蛋白表達[59]。
AD是一種慢性進行性神經系統退行性病變,到2050年,全球每85人中將有1人患有AD[60]。AD病因及發病機制尚不完全清楚,目前無特效治療手段[1]。Aβ是腦內正常的代謝產物之一,生理濃度的Aβ具有促進突觸功能及調節神經元活性等作用[61]。但 在 AD 中,淀 粉 樣 蛋 白 假 說 (amyloid peptide cascade hypothesis)認為過量Aβ沉積及其神經毒性作用是AD發病的關鍵[1]。RAGE可能是介導Aβ神經毒性的重要調節因子,其表達上調不僅造成血管內皮及神經細胞自身炎癥反應,并能促進 Aβ 入 腦 沉 積 而 加 重 AD 病 變[36,37]。TJ 是BMECs間的重要結構,是BBB正常功能的基礎,Aβ損傷BMECs破壞BBB結構完整性。RAGE介導Aβ損傷TJ的機制尚未明確,可能與多種細胞內信號轉導通路、Ca2+或炎癥損傷有關。雖然RAGE的正常生理作用尚不清楚,但抑制RAGE能阻止Aβ對神經細胞及腦血管系統的損害,有可能成為緩解或阻止AD發生發展的新的干預靶點,從而為防治AD提供新的思路。
[1]Lomoio S,López-González I,Aso E,et al.Cerebellar amyloid-βplaques:disturbed cortical circuitry in AβPP/PS1 transgenic mice as a model of familial Alzheimer's disease[J].J Alzheimers Dis,2012,31(2):285-300.
[2]Hartz AM,Bauer B,Soldner EL,et al. Amyloid-β contributes to blood-brain barrier leakage in transgenic human amyloid precursor protein mice and in humans with cerebral amyloid angiopathy[J].Stroke,2012,43(2):514-523.
[3]Biron KE,Dickstein DL,Gopaul R,et al.Amyloid triggers extensive cerebral angiogenesis causing blood brain barrier permeability and hypervascularity in Alzheimer's disease[J].PloS one,2011,6(8):e23789.
[4]Love S,Miners S,Palmer J,et al.Insights into the pathogenesis and pathogenicity of cerebral amyloid angiopathy[J].Front Biosci:Landmark Ed,2009,14:4778-4492.
[5]Wang YJ,Zhou HD,Zhou XF.Clearance of amyloid-beta in Alzheimer's disease:progress,problems and perspectives[J].Drug Discov Today,2006,11(19-20):931-938.
[6]Deane R,Bell RD,Sagare A,et al.Clearance of amyloidbeta peptide across the blood-brain barrier:implication for therapies in Alzheimer's disease [J].CNS Neurol Disord Drug Targets,2009,8(1):16-30.
[7]Sharma HS,Castellani RJ,Smith MA,et al.The bloodbrain barrier in Alzheimer's disease:novel therapeutic targets and nanodrug delivery[J].Int Rev Neurobiol,2012,102:47-90.
[8]Shen S,Zhang W.ABC transporters and drug efflux at the blood-brain barrier[J].Rev Neurosci,2010,21(1):29-53.
[9]Ronaldson PT,Davis TP.Blood-brain barrier integrity and glial support:mechanisms that can be targeted for novel therapeutic approaches in stroke [J].Curr Pharm Des,2012,18(25):3624-3644.
[10]Correale J,Villa A.Cellular elements of the blood-brain barrier[J].Neurochem Res,2009,34(12):2067-2077.
[11]Coisne C,Engelhardt B.Tight junctions in brain barriers during central nervous system inflammation [J].Antioxid Redox Signal,2011,15(5):1285-1303.
[12]Luissint AC,Artus C,Glacial F,et al.Tight junctions at the blood brain barrier:physiological architecture and disease-associated dysregulation [J].Fluids Barriers CNS,2012,9(1):23.
[13]Baeten KM,Akassoglou K.Extracellular matrix and matrix receptors in blood-brain barrier formation and stroke [J].Dev Neurobiol,2011,71(11):1018-1039.
[14]Bednarczyk J,Lukasiuk K.Tight junctions in neurological diseases[J].Acta Neurobiol Exp :Wars,2011,71(4):393-408.
[15]Liu WY,Wang ZB,Zhang LC,et al.Tight junction in blood-brain barrier:an overview of structure,regulation,and regulator substances[J].CNS Neurosci Ther,2012,18(8):609-615.
[16]Zlokovic BV.The blood-brain barrier in health and chronic neurodegenerative disorders[J].Neuron,2008,57(2):178-201.
[17]Zlokovic BV.Neurovascular mechanisms of Alzheimer's neurodegeneration[J].Trends Neurosci,2005,28(4):202-208.
[18]Marchesi VT.Alzheimer's dementia begins as a disease of small blood vessels, damaged by oxidative-induced inflammation and dysregulated amyloid metabolism:implications for early detection and therapy[J].FASEB J,2011,25(1):5-13.
[19]Zlokovic BV.Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders [J].Nat Rev Neurosci,2011,12(12):723-738.
[20]Han BH,Zhou ML,Abousaleh F,et al.Cerebrovascular dysfunction in amyloid precursor protein transgenic mice:contribution of soluble and insoluble amyloid-beta peptide,partial restoration via gamma-secretase inhibition [J].J Neurosci,2008,28(50):13542-13550.
[21]Tai LM,Holloway KA,Male DK,et al.Amyloid-betainduced occludin down-regulation and increased permeability in human brain endothelial cells is mediated by MAPK activation[J].J Cell Mol Med,2010,14(5):1101-1112.
[22]Carrano A,Hoozemans JJ,van der Vies SM,et al.Amyloid Beta induces oxidative stress-mediated blood-brain barrier changes in capillary amyloid angiopathy[J].Antioxid Redox Signal,2011,15(5):1167-1178.
[23]Crehan H,Hardy J,Pocock J.Microglia,Alzheimer's disease,and complement[J].Int J Alzheimers Dis,2012,2012:983640.
[24]Miners JS,Barua N,Kehoe PG,et al.Aβ-degrading enzymes:potential for treatment of Alzheimer disease[J].J Neuropathol Exp Neurol,2011,70(11):944-959.
[25]Zlokovic BV.Clearing amyloid through the blood-brain barrier[J].J Neurochem,2004,89(4):807-811.
[26]Wilhelmus MM, Otte-H?ller I,van Triel JJ,et al.Lipoprotein receptor-related protein-1mediates amyloid-betamediated cell death of cerebrovascular cells [J].Am J Pathol,2007,171(6):1989-1999.
[27]Deane R,Singh I,Sagare AP,et al.A multimodal RAGE-specific inhibitor reduces amyloid beta-mediated brain disorder in a mouse model of Alzheimer disease[J].J Clin Invest,2012,122(4):1377-1392.
[28]Deane RJ.Is RAGE still a therapeutic target for Alzheimer's disease?[J].Future Med Chem,2012,4(7):915-925.
[29]Deane R,Du Yan S,Submamaryan RK,et al.RAGE mediates amyloid-beta peptide transport across the bloodbrain barrier and accumulation in brain[J].Nat Med,2003,9(7):907-913.
[30]Slowik A,Merres J,Elfgen A,et al.Involvement of formyl peptide receptors in receptor for advanced glycation end products (RAGE)-and amyloid beta1-42-induced signal transduction in glial cells [J].Mol Neurodegener 2012,7:55.
[31]Yin QQ,Dong CF,Dong SQ,et al.AGEs induce cell death via oxidative and endoplasmic reticulum stresses in both human SH-SY5Yneuroblastoma cells and rat cortical neurons[J].Cell Mol Neurobiol,2012,32(8):1299-1309.
[32]Ohtsuki S,Ito S,Terasaki T.Is P-glycoprotein involved in amyloid-beta elimination across the blood-brain barrier in Alzheimer's disease?[J].Clin Pharmacol Ther,2010,88(4):443-445.
[33]Abuznait AH,Kaddoumi A.Role of ABC transporters in the pathogenesis of Alzheimer's disease [J]. ACS Chem Neurosci,2012,3(11):820-831.
[34]Fritz G.RAGE:a single receptor fits multiple ligands[J].Trends Biochem Sci,2011,36(12):625-632.
[35]Lue LF,Walker DG,Brachova L,et al.Involvement of microglial receptor for advanced glycation endproducts(RAGE)in Alzheimer's disease:identification of a cellular activation mechanism [J].Exp Neurol,2001,171(1):29-45.
[36]Origlia N,Arancio O,Domenici L,et al.MAPK,betaamyloid and synaptic dysfunction:the role of RAGE [J].Expert Rev Neurother,2009,9(11):1635-1645.
[37]Maczurek A,Shanmugam K,Münch G.Inflammation and the redox-sensitive AGE-RAGE pathway as a therapeutic target in Alzheimer's disease[J].Ann N Y Acad Sci,2008,1126:147-151.
[38]Arancio O,Zhang HP,Chen X,et al.RAGE potentiates Abeta-induced perturbation of neuronal function in transgenic mice[J].EMBO J,2004,23(20):4096-4105.
[39]Hickman SE, Allison EK, El Khoury J. Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer's disease mice[J].J Neurosci,2008,28(33):8354-8360.
[40]Hu Q,Chen C,Yan J,et al.Therapeutic application of gene silencing MMP-9in a middle cerebral artery occlusion-induced focal ischemia rat model[J].Exp Neurol,2009,216(1):35-46.
[41]Cruzalegui FH,Bading H.Calcium-regulated protein kinase cascades and their transcription factor targets[J].Cell Mol Life Sci,2000,57(3):402-410.
[42]Yang Y, Hill JW,Rosenberg GA. Multiple roles of metalloproteinases in neurological disorders[J].Prog Mol Biol Transl Sci,2011,99:241-263.
[43]Asahi M,Wang X,Mori T,et al.Effects of matrix metalloproteinase-9gene knock-out on the proteolysis of blood-brain barrier and white matter components after cerebral ischemia [J].J Neurosci,2001,21 (19):7724-7732.
[44]Yang Y, Rosenberg GA. MMP-mediated disruption of claudin-5in the blood-brain barrier of rat brain after cerebral ischemia[J].Methods Mol Biol,2011,762:333-345.
[45]Zhang YM,Zhou Y,Qiu LB,et al.Altered expression of matrix metalloproteinases and tight junction proteins in rats following PEMF-induced BBB permeability change [J].Biomed Environ Sci,2012,25(2):197-202.
[46]Du H,Li P,Wang J,et al.The interaction of amyloid beta and the receptor for advanced glycation endproducts induces matrix metalloproteinase-2expression in brain endothelial cells[J].Cell Mol Neurobiol,2012,32(1):141-147.
[47]Zhu P,Ren M,Yang C,et al.Involvement of RAGE,MAPK and NF-kappaB pathways in AGEs-induced MMP-9 activation in HaCaT keratinocytes[J].Exp Dermatol,2012,21(2):123-129.
[48]Chen D,Wei XT,Guan JH,et al.Inhibition of c-Jun N-terminal kinase prevents blood-brain barrier disruption and normalizes the expression of tight junction proteins clautin-5 and ZO-1in a rat model of subarachnoid hemorrhage [J].Acta Neurochir:Wien,2012,154(8):1469-1476,discussion 1476.
[49]Zhang L,Jouret F,Rinehart J,et al.AMP-activated protein kinase(AMPK)activation and glycogen synthase kinase-3beta (GSK-3beta)inhibition induce Ca2+-independent deposition of tight junction components at the plasma membrane[J].J Biol Chem,2011,286(19):16879-16890.
[50]Fujita H,Sugimoto K,Inatomi S,et al.Tight junction proteins claudin-2and-12are critical for vitamin D-dependent Ca2+absorption between enterocytes [J].Mol Biol Cell,2008,19(5):1912-1921.
[51]Kagan BL,Hirakura Y,Azimov R,et al.The channel hypothesis of Alzheimer's disease:current status [J].Peptides,2002,23(7):1311-1315.
[52]Kook SY, Hong HS, Moon M,et al.Aβ1-42-RAGE interaction disrupts tight junctions of the blood-brain barrier via Ca2+-calcineurin signaling[J].J Neurosci,2012,32(26):8845-8854.
[53]Lue LF,Yan SD,Stern DM,et al.Preventing activation of receptor for advanced glycation endproducts in Alzheimer's disease[J].Curr Drug Targets CNS Neurol Disord,2005,4(3):249-266.
[54]Perrone L,Sbai O,Nawroth PP,et al.The Complexity of Sporadic Alzheimer's Disease Pathogenesis:The Role of RAGE as Therapeutic Target to Promote Neuroprotection by Inhibiting Neurovascular Dysfunction[J].Int J Alzheimers Dis,2012,2012:734956.
[55]Pfizer,Alzheimer's Disease Cooperative Study.A Phase ⅡStudy Evaluating the Efficacy and Safety of PF 04494700in Mild to Moderate Alzheimer's Disease[EB/OL].http://clinicaltrials. gov/ct2/show/NCT00566397, 2007-11-29/2013-08-11.
[56]Sabbagh MN,Agro A,Bell J,et al.PF-04494700,an oral inhibitor of receptor for advanced glycation end products(RAGE),in Alzheimer disease[J].Alzheimer Dis Assoc Disord,2011,25(3):206-212.
[57]Yan SF,Ramasamy R,Schmidt AM.Soluble RAGE:therapy and biomarker in unraveling the RAGE axis in chronic disease and aging[J].Biochem Pharmacol,2010,79(10):1379-1386.
[58]Han SH,Kim YH,Mook-Jung I.RAGE:the beneficial and deleterious effects by diverse mechanisms of actions[J].Mol Cells,2011,31(2):91-97.
[59]Yan FL,Zheng Y,Zhao FD.Effects of ginkgo biloba extract EGb761on expression of RAGE and LRP-1in cerebral microvascularendothelial cells under chronic hypoxia and hypoglycemia[J].Acta Neuropathol,2008,116(5):529-535.
[60]AHAF.The Facts on Alzheimer's Disease[EB/OL].http://www. brightfocus. org/alzheimers/about/understanding/facts.html,2011-01-11,2011-03-07.
[61]Mattson MP.Pathways towards and away from Alzheimer's disease[J].Nature,2004,430(7000):631-639.