999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Experimental Study on Mechanical Properties of Low Carbon Steel with Ultrasonic Vibration Tensile

2013-09-17 12:10:58CHENGXueliZHAOMingliCHENLihong
機(jī)床與液壓 2013年12期

CHENG Xueli,ZHAO Mingli,CHEN Lihong

1 Department of Mechanical Engineering,Henan Mechanical and Electrical Engineering College,Xinxiang 453000,China;

2.School of Mechanical and Power Engineering,Henan Polytechnic University,Jiaozuo 454000,China;

3.North Automatic Control Technology Institute,Taiyuan 030006,China

The tensile test is firstly used to determine the mechanical properties of metal materials,and is the most widely used testing method.Due to the simple,intuitive,easy process and representation,it is widely adopted in many fields of metallurgy,machining,construction and scientific research,and it becomes one of the most common method to determine the physical properties of metal materials[1].The performance of metal material under the external force,such as elasticity,plasticity,strength and toughness are called the mechanical properties[2].Currently,the tensile test on low carbon steel under the normal conditions have been comprehensively conducted,and the mechanical properties are very clear.However,the mechanical properties in the ultrasonic vibration stretch are very bare.It is well known that the ultrasonic vibration machining have many advantages,such as reducing the cutting force,decreasing the cutting temperature,improving tool life and machined surface quality.However,it is not clear that how the ultrasonic vibration influence on the tensile test.In order to clarify the difference between the ultrasonic vibration stretching and conventional stretching on the mechanical properties of low carbon steel,the tensile tests are conducted,respectively in this paper.It is expected to play a guiding role on the research of the low carbon steel.

1.Test methods and conditions

Firstly,the scribing machine is used to carve a peripheral line every 5 mm within the l0gauge,and to divide l0into 10 divisions to observe the change of gauge.Then,the dynamometer pointer is adjusted to“zero”point,and make follow-pointers overlap with it,and set the drawing device.After that,the test machine is properly checked and load it slowly and evenly to observe the experimental phenomena.When the dynamometer pointer does not move or back-wards,it indicates that the material is beginning to yield,and then the yield load P,is recorded.If keep loading the specimen to fracture,the maximum load Pbcould be read out.Finally,the specimen is removed and the relationship of P-ΔL(force-displacement)is plotted aligned with the two sections of the fracture specimen by using the vernier caliper to measure length l1,the fracture(necking)diameter d1,and calculating the fracture cross sectional area A1[3].Tensile test was conducted on a group of four workpieces and the most reasonable curve will be chosen as the tensile curve from four tensile curves in this condition.

Test frequency are:20,20.845,21.7 kHz,and the test power are:80,70,60 and 50 W.In order to clearly observe the change,the lateral(ΔL direction)will be enlarged by 20 times.The test equipments and conditions are shown in Tab.1,and the ultrasonic vibration tensile test site and set are as shown in Fig.1 and Fig.2.

Tab.1 Experiment conditions

Fig.1 Ultrasonic tension experiment site

Fig.2 Experiment debugging site

2.The mechanical properties with Ultrasonic Vibration Tensile

2.1.Test data acquisition

The Low carbon steel tensile diagram could be automatically plotted by the testing machine.Automatic drawing device was shown in Fig.3,and the tensile curves are shown in Fig.4.

It should be noted that the tension specimen deformation ΔL is mainly the elongation of the workpiece.In addition,due to the consideration of the elastic deformation of the machine itself,the sliding test piece in a chuck and other factors.When the specimen sustains the force,the sliding of the holding portion within the chuck will become big and then it will disappear.

Fig.3 Automatic drawing device

Fig.4 The curve of tension

If we use ΔL of P - ΔL curve dwarfed by material testing machine drawing device to calculate E,it will produce a certain deviation.In order to accurately measure E,it is necessary to accurately measure the deformation of the specimen within the gauge,thus we adopt the extensometer and use the incre-mental method to divide the final load into equal parts,and load progressively to measure the deformation of the specimen[4].The measuring data are shown in Tab.2 and Tab.3,and the rest of the test data are not presented in this paper.

Tab.2 The tensile data when P equals 80 W and f equals 0 kHz

Tab.3 The tensile data when P equals 80 W and f equals 20.845 kHz(resonance vibration)

Conduct one-dimensional interpolation for the above test data(including not listed in the text)and obtain an interpolation curves,which is shown in Fig.5.From this figure,when the power P is 80 W,in resonance case,the curve is at the bottom,the yielding is not obvious.We find that the testing machine hands is just for instant detention,tensile curve is similar with that of copper and other soft metal,which is consistent with those in Fig.4.

In order to reduce article space,in the resonance case,the tensile test experimental data obtained by changing the ultrasonic power is not presented in this paper and the one-dimensional interpolation curve is shown in Fig.6.From Fig.6,we can see that the change of power will affect vibration stretching,the smaller power of the vibration,the worse of softening effect.

2.2.The material plasticity and determination

2.2.1.The determination of elongation δ

Set the model length l0,fracture it and butted two sections of the specimen together tightly,measure the fractured model length l1,so the elongation δ could be obtained as follows[5]:

Fig.5 The interpolation curve of experimental data in diffierent frequency when P equals 80 W

Fig.6 The interpolation curve of experimental data in different power when f equals 20.845 kHz

2.2.2.Determination of Sectional shrinkage ψ

The cross-section shrinkage is the relative shrinkage value of cross-section specimens after fracturing.The evaluation equation could be expressed:

where,A1is the smallest cross-sectional area of fractured specimen(mm2);A0is the original cross-sectional area of specimen(mm2).

The specimen model length can not affect the value of ψ,but the original specimen diameter does affect the value of ψ slightly[6].

When the measurements of the elongation or shrinkage of the workpiece are conducted in a certain range of power and frequency,it is necessary to carry out measurement on a set of(four)workpieces and remove the results of workpiece with obvious defects.And then take the average value of the rest as the test result,the measured results are shown in Tab.4 and Tab.5.

Tab.4 The tensile data in diffierent frequency when P equals 80 W

Tab.5 The tensile data in diffierent power when f equals 20.845 kHz(resonance vibration)

As can be seen from the test results of Table.4 and Table.5,the elongation and shrinkage are decreased with the decrease of power and the relationship between these two parameters is monotonic even the declined trend is not very obvious.In terms of frequency,at the resonance point,the decrease becomes very obvious and it is slightly deviated from the resonance point,the effect is greatly reduced.The closer to the resonance point,the lower values of the elongation and shrinkage.On both sides of the resonance point,it is not symmetrical(i.e.,20 and 21.7 are symmetrical about 20.845),but from the results of the experiment,the degree of reduction is asymmetry,the high frequency has large degree of reduction,but the differences is not particularly obvious.

2.3.The determination of the elasticity modulus E

The elasticity modulus E is generally measured by the tensile test within the proportional limit.Since the materials obey Hooke’s law,the relationship between the load and the deformation could be expressed as follows[7]:

If the load P and specimen size are known,the elasticity modulus E could be derived as long as the specimen elongation is obtained[7].

When find out the loading program in the level increment,select the early load in the 10%of the full scale of the disk or slightly larger than this value,it should be at least five levels loading.Since the data of measuring the elasticity modulus is from the elastic stage and trace plastic deformation stage,the cross-sectional area of the material in this phase can be regarded as constant,the cross-section can be regarded as continuity.The force and displacement data of the elastic phase are converted into stress and strain data,respectively,by divided the workpiece into A0and L0,and the transformed data for the linear fitting,the slope of straight line is the elasticity modulus of the workpiece material in this case.The power is 80 W,the fitting curves of frequency are shown in Fig.7.The resonant frequency of 20.845 kHz is selected and the fitting curves of power are shown in Fig.8.

2.4.The strength of the material and its determination

Strength is the resistance against plastic deformation and fracture resistance of objects under the external force.The common indicators are the yield strength (yield limit)σsand tensile strength(strength limit)σbwhich will decide the material mechanics parameters in the normal use.

According to the experimental data,divide the force P by the area to get stress,σsand σbcurve with the frequency and power,respectively,as shown in Fig.9(a)and(b).

Due to the resonance power 80 W,20#steel has no obvious yield phenomenon to reach the yield limit σ0.2.From the view of the reduction degree,the strength indicators σs、σband the elastic modulus E are similar to the plastic performance indicators,but the degree of reduction is much lower than the that of the plastic performance indicators.

Fig.7 The fitting curve when P equals 80 W and f equals 0,20.845 kHz and 20 kHz(E equals 202.54、186.82 MPa and 194.88 MPa separatly)

Fig.8 The fitting curve when f equals 20.845 kHz and P equals 50 W、60 W and 70 W(E equals198.64 MPa,193.53 and 197.12 MPa separatly)

Fig.9 The curve of yielding strength σs、tensile strength σbfollowing frequency and power

3.Conclusions

In this paper,the ultrasonic vibration tensile test of the Low Carbon steel was conducted,the test method is developed in certain test conditions and the test data is recorded.One-dimensional interpolation curve of the test data is obtained and the following conclusions could be drawn:

The mechanical properties of low carbon steel with ultrasonic and without ultrasonic stretch are quite different. In ultrasonic tensile, material strength index σs,σband elastic modulus E are all decreased,which shows the softening phenomenon.The material yield phenomenon disappears in the resonance of the high-power.The elongation and shrinkage are decreased,and the deformation force of fracture is reduced as well,which is consistent with the conclusions in the literature[8].

The ultrasonic frequency and power will affect the material softening degree.Around the resonance frequency,the material softening phenomenon becomes very obvious.Once the frequency deviates from the resonance point,the softening effect will be reduced.The softening of high frequency value is much better in deviating from the resonance point.For a certain frequency,the smaller of the vibration power,the worse of the softening effect.

[1] WANG Yanyun,WANG Qin,CHEN Lirong.Test Research on Tensile speed effect on the mechanical performance of low steel and cast iron[J].Agriculture and technology,2012,30(6):118 -121.

[2] TAN Xiaofeng.Discussion to metal material pulling test stress-strain diagram[J].Goods and quality,2010(6):2-3.

[3] QIN Jun.Study on mechanical property of 20#steel under ultrasonic vibration simple tension[D].Henan Polytechnic University:Mater.Master’s thesis,2007:69-72.

[4] GU Chunqi.Based on virtual test car structure bonding technology research[D].Shanghai:Tongji University Chinese-German College,2008.

[5] YANG Shaochong.Study on mechanics performance of Glass fibre laminated plate[D].Hebei:Hebei University,2009.

[6] SUN Maocai.Metal mechanical properties[M].Harbin:Harbin industrial university press,2003:43 -45.

[7] ZHOU Tuanfeng, ZHANG Guirong, WANG Xinzhi.Measurement of modulus of elasticity and Poissons’ratio of galvano foils by speckle pattern interferometry[J].Oral cavity jaw face prosthetics magazine,2010(4):247-250.

[8] WANG Gang,CHEN Junying,CHENG Jin.Design and manufacturing of ultrasonic installation for tensile test[J].Harbin Institute of Technology,2000,3(32):81-84.

主站蜘蛛池模板: 精品久久蜜桃| 日韩在线2020专区| 亚洲二三区| 久操线在视频在线观看| 欧美三级日韩三级| 少妇高潮惨叫久久久久久| 亚洲国产成熟视频在线多多| 亚洲—日韩aV在线| 国产毛片高清一级国语 | 伊人久久影视| 国产小视频免费观看| 欧美成人看片一区二区三区| 青青草一区| 性色一区| 国产精品自在线天天看片| 最新国产成人剧情在线播放| 久久久噜噜噜久久中文字幕色伊伊| 狠狠综合久久| 国产人成在线视频| 亚洲AV电影不卡在线观看| 国产av色站网站| 国产在线视频导航| 国产免费久久精品99re丫丫一| 成人在线不卡| 国产乱人免费视频| 国产综合精品一区二区| 在线国产三级| 毛片视频网址| 国产成人AV男人的天堂| 亚洲日产2021三区在线| 国产黄在线免费观看| 亚洲最新地址| 无码高潮喷水在线观看| 国产精品久线在线观看| av一区二区人妻无码| 一本综合久久| 久久久国产精品免费视频| 亚洲高清在线播放| 日本黄色a视频| 婷婷色狠狠干| 亚洲第一色网站| 日韩免费无码人妻系列| 欧美色综合久久| 亚洲男人的天堂在线| 亚洲综合色婷婷中文字幕| 永久天堂网Av| 免费人成在线观看视频色| 亚洲综合天堂网| 国产成人午夜福利免费无码r| 91色国产在线| 91欧美在线| av手机版在线播放| 538精品在线观看| 91国语视频| 国产精品女主播| 午夜日b视频| 國產尤物AV尤物在線觀看| 成年人福利视频| 国产一区二区三区在线精品专区| 亚洲国产综合精品一区| 欧美国产另类| 午夜性刺激在线观看免费| 亚洲第一区在线| 91在线无码精品秘九色APP| 免费无遮挡AV| 亚洲综合激情另类专区| 尤物国产在线| 亚洲h视频在线| 久久夜色精品国产嚕嚕亚洲av| a亚洲视频| 成·人免费午夜无码视频在线观看| 色网站在线免费观看| 国产理论最新国产精品视频| 一区二区三区四区精品视频| 亚洲日韩精品欧美中文字幕 | 黄色一及毛片| 精品无码国产一区二区三区AV| 精品91视频| 亚洲αv毛片| 中文字幕啪啪| 亚洲第一成年网| 国产精品国产三级国产专业不|