999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

用擴展的Istomin-Palm 模型估算雙向延伸化合物R1-Y-R2生成焓

2013-09-21 08:59:12曹晨忠武亞新
物理化學學報 2013年1期
關鍵詞:實驗室

曹晨忠 武亞新

(1湖南科技大學化學化工學院,理論化學與分子模擬教育部重點實驗室,分子構效關系湖南省普通高校重點實驗室,湖南湘潭411201;2中南大學化學化工學院,長沙410083)

1 Introduction

As one of the most important thermodynamic parameters,the enthalpy of formation ΔfH0plays an important role in the chemical research.For lack of available experimental data,the accurate calculation of the ΔfH0by theoretical method has attracted more and more attention.1-13Previous research indicated that the effect of the interactions among bonding and non-bonding atoms or groups on the ΔfH0for organic compounds is very obvious,and can not be neglected in the calculation process.14-19Ju et al.16reported that the interacting energies(in the range of 14-20 kJ·mol-1)from neighbor difluoroamino groups discorded with the group additivity in calculating the ΔfH0for polydifluoroaminocubanes.Mathieu18proved that the introduction of pairwise interactions between geminal atoms and adjacent bonds in strained rings dramatically improved the performance of simple bond additivity schemes for ΔfH0prediction.Above reported works imply that,to obtain more reliable values of enthalpies of formation,the contributions of the interactions among the component atoms or groups must be taken into account for.

For monoderivatives of hydrocarbons RX,their enthalpies of formation can be divided into three parts,and expressed by Eq.(1)(i.e.,Istomin-Palm model).20

ΔfH0(RX)=h[R]+h[X]+φ[R]φ[X] (1)In Eq.(1),the h[R]and h[X]are the contributions of alkyl R and substituent X to the ΔfH0(RX),respectively.φ[R]φ[X]represents the interaction of alkyl R and substituent X.Cao et al.21-23has employed the product of the electronegativity(χ)of the radical atom of substituent X and the polarizability effect index(PEI)or topological electronegativity index(TEI)of the alkyl R to roughly scale the interaction between the R and X(φ[R]φ[X]).It is noted that the χ of the radical atom can not distinguish those substituents whose radical atom is the same(such as the couple of―CHO and―COOH,or the couple of―NH2and―NO2).However,it is commonly believed that the structural characteristic and influence on the molecular properties of each couple of groups are different.Thus,in our recent work,24a new concept of interaction potential index IPI(X)was proposed to scale the interaction potential of the X with an alkyl,and the IPI(X)values of 16 kinds of groups(X=OH,SH,NH2,Br,Cl,I,NO2,CN,CHO,COOH,CH3,CH=CH2,C≡CH,Ph,COCH3,COOCH3)were obtained,with which a more effective model was developed for evaluating the ΔfH0(g)values of monosubstituted alkanes RX(including the branched derivatives).

With respect to the two-direction extending compounds R1-Y-R2,the substituents(Y)are in the middle of the molecular chain and attached by two alkyl groups(R1,R2).Their intramolecular interactions among the substituent and alkyls are more complicated than that in the RX.Thus,the item φ[R]φ[X]of Eq.(1)is unavailable.In this paper,the intramolecular interactions among the Y,R1,and R2 are investigated,and a general expression is derived to describe the enthalpies of formation of R1-Y-R2.

2 Method

In general,we think,the interactions among Y,R1,and R2 in the compounds R1-Y-R2 should be divided into three parts:the interaction between R1Y and R2(φ[R2]φ[R1Y]),the interaction between YR2 and R1(φ[R1]φ[YR2]),and the interaction between R1 and R2(ψ[R1]ψ[R2]).Therefore,Eq.(1)can be extended as Eq.(2)to express the enthalpies of formation of R1-Y-R2.

In Eq.(2),the h[Y]is the contribution of substituent Y to the ΔfH0.The h[R1]and h[R2]are the contributions of alkyls R1 and R2 to the ΔfH0,respectively.The last three items are the total contribution of interactions among the Y,R1,and R2 to the ΔfH0.

According to our previous studies,21-24the h[R1],h[R2],φ[R1],and φ[R2]can be scaled by Eqs.(3)to(6),respectively.

In Eqs.(3)to(6),the c and d are coefficients,the NC(R1)and NC(R2)are the C atom number of alkyls R1 and R2,respectively.The PEI(R)indicates the polarizability effect index of group R,which is proposed on the basis of the principle that groups are polarized by electric fields.25,26The ΔPEI(R)is the increment of PEI(R)of the branched alkyl to that of its isomeric straightchain alkyl.24

The h[X]in Eq.(1)has a good correlation with the experimental ΔfH0values of monosubstituted methane ΔfH0(MeX).24Similarly,it can be considered that there is a good correlation between the h[Y]in Eq.(2)and the experimental value of ΔfH0(Me-Y-Me).Thus,the Eq.(7)can be used to scale the h[Y].

In Eq.(7),the a and b are coefficients.

In common believe,the action of group R1Y on R2(i.e.,φ[R1Y])is not only related to the intrinsic action of subsitituent Y on an alkyl(i.e.,φ[Y]),but also affected by the alkyl(R1)connected to Y.Therefore,the φ[R1Y]can be expressed as

where q is a coefficient,and the φ[R1]φ[Y]represents the influence of R1 on the subsitituent Y.Similarly,the action of group YR2 on R1(i.e.,φ[YR2])can be expressed as

In our previous work,24in case X groups are OH,SH,NH2,and CHO,the φ[X]can be scaled by the interaction potential of the X with an alkyl,which is defined as the interaction potential index IPI(X).Thus,for the Y groups O,S,NH,and CO,the YH are OH,SH,NH2,and CHO,that is to say,YH corresponds to its X,and it can be speculated that the IPI(Y)is proportional to the IPI(X),

φ[Y]=IPI(Y)=eIPI(X) (10)In Eq.(10),the e is a coefficient.Combining Eqs.(5,6,10)with Eqs.(8,9),we obtained the expressions of φ[R1Y]and φ[YR2]respectively.

In general,it is considered that the interaction of R1 and R2 is mainly affected by steric effects.In the present work,the last item ψ[R1]ψ[R2]in Eq.(2)is expressed by the product of ΔTSEI(R1)and ΔTSEI(R2),

In Eq.(13),the g is a coefficient.The ΔTSEI(R)is the increment of topological steric effect index27of the branched alkyl to that of its isomeric straight-chain alkyl,and can be calculated as shown in Eq.(14).

Take group t-Bu for a calculation example,its ΔTSEI(R)is,

Combining Eqs.(3-13)with Eq.(2),we obtained the expression of the ΔfH0(R1-Y-R2),

where f is a coefficient,that is f=-2e×q.The detailed meanings of the parameters in Eq.(15)are as follows,

For the esters R1C(O)OR2,its R1 is attached to the C atom and R2 to the O atom.It implies that the intrinsic action of group C(O)O(φ[C(O)O])on alkyls R1 and R2 is different from each other.Therefore,Eqs.(11,12)are revised as Eqs.(16,17)to express the action of R1C(O)O on R2(i.e.,φ[R1C(O)O])and the action of C(O)OR2 on R1(i.e.,φ[C(O)OR2]),respectively.

Based on the above analyses,Eq.(15)can be expanded as Eq.(18a)to express ΔfH0of esters R1COOR2.

In Eq.(18a),theΔfH0(MeCOOMe),IPI(C(O)OH),and IPI(HC(O)O)are constants.Therefore,Eq.(18a)can be simplified to Eq.(18b),

Table 1 Interrelation of ΔfH0(Me-Y-Me),ΣNC(Ri),ΣΔPEI(Ri),IPI(X),ΠPEI(Ri),ΠΔTSEI(Ri),PEI(R1),and PEI(R2)

where k1,l1,m1,and n1are coefficients,that is

The correlations between these parameters ΔfH0(Me-Y-Me),,ΣΔPEI(Ri),IPI(X),ΠPEI(Ri),ΠΔTSEI(Ri),PEI(R1),and PEI(R2)were investigated.Results of Table 1 show that these 8 parameters of 81 two-direction extending compounds R1-Y-R2(Y=S,NH,O,CO,C(O)O)are independent of each other.

3 Results and discussion

3.1 Predicting the ΔfH0of thioether,secondary amines,ethers,and ketones

To test the efficiency of Eq.(15),we took 54 experimental(g)values13,28,29of R1-Y-R2(Y=S,NH,O,CO)as a data set(see Table 2 and Table 3),and carry out a regression analysis with the six parameters,ΔfH0(Me-Y-Me,g),ΣNC(Ri),ΣΔPEI(Ri),IPI(X)×ΣPEI(Ri),IPI(X)×ΠPEI(Ri),and ΠΔTSEI(Ri).The result was shown as Eq.(19).

Table 2 Calculated and experimental values of ΔfH0(g)of R1-Y-R2(Y=S,NH,O,CO)

Table 3 IPI,PEI,TSEI,ΔPEI,and ΔTSEI values of R1 and R2 in R1-Y-R2(Y=S,NH,O,CO)

Fig.1 Plot of ΔfH0(g)calc.calculated with Eq.(19)vs ΔfH0(g)exp.

where the statistics r,s,F,and n represent the correlation coefficient,the standard deviation of the linear regression,Fischer criterion,and the sample numbers,respectively.The rcvand scvare the correlation coefficient and standard deviation calculated by leave-one-out(LOO)method.Eq.(19)has a good correlation(see Fig.1).The average absolute error between the experimental values and the calculated values is only 2.6 kJ·mol-1,within the experimental uncertainties.The coefficient in front20.7899,indicates the contribution of each CH2unit to the ΔfH0(g).Its value is very close to the value,-20.69,derived from the straight-chain alkanes.24This implys that the group contribution of a CH2unit obtained by Eq.(19)is reasonable and accurate.The results of leave-one-out(LOO)method(rcv=0.9989,scv=4.6 kJ·mol-1)confirm the stability of Eq.(19).The above results proved that Eq.(15)is an effective model for estimating the ΔfH0(g)of thioether,secondary amines,ethers,and ketones.In this work,Eq.(19)is also employed to predict the ΔfH0(g)of over 500 compounds,and these predicted values are given in the Supporting Information.

3.2 Comparison with G3 and G3B3 model chemistries

Bond13proposed that the enthalpies of formation for nitrogen-,oxygen-,sulfur-,fluorine-,chlorine-,and silicon-containing compounds can be computed with reasonable accuracy using the G3 and G3MP2 model chemistries.The calculated ΔfH0(g)values of four kinds of compounds including thioether,secondary amines,ethers,and ketones with Eq.(19)and those calculated by G3 and G3MP2 model chemistries are all given in Table 2.Their average absolute errors between the experimental and the calculated values using G3 model are 2.7,2.9,4.1,and 2.7 kJ·mol-1respectively,and those of using G3MP2 model are 2.3,2.4,4.3,and 3.5 kJ·mol-1respectively.13The average absolute error of Eq.(19)is only 2.6 kJ·mol-1.That is to say,the value of ΔfH0calc.with Eq.(19)is as accurate as that from G3 and G3MP2 model chemistries.Moreover,Eq.(19)avoids bothersome calculations.

3.3 Predicting the ΔfH0of esters

The 27 experimental values of ΔfH0(g)of esters R1C(O)OR2 were taken as a data set to correlate with parameters ΣNC(Ri),ΣΔPEI(Ri),PEI(R1),PEI(R2), ΠPEI(Ri),and ΠΔTSEI(Ri)(see Table 4 and Table 5),and Eq.(20)was obtained.

Table 4 ΔfH0(g)values of R1C(O)OR2

Table 5 PEI,TSEI,ΔPEI,and ΔTSEI values of R1 and R2 in R1C(O)OR2

Fig.2 Plot of ΔfH0(g)calc.calculated with Eq.(20)vs ΔfH0(g)exp.

In Eq.(20),there is a good linear correlation(see Fig.2).The average absolute error between the experimental values and the calculated values is only 2.0 kJ·mol-1,which is less than that of 4.8 kJ·mol-1(G3 model)and 2.4 kJ·mol-1(G3MP2 model),respectively.13The coefficient in front of ΣNC,-20.3905,indicates the contribution of each CH2unit to the ΔfH0(g),which is also closed to that value,-20.69,reported in literature.24This result proved that Eq.(20)can be used to estimate ΔfH0(g)of esters.In this work,the Eq.(20)is employed to predict the ΔfH0(g)of over 200 esters,and these predicted values are also given in the Supporting Information.

4 Conclusions

The intramolecular interactions of the R1-Y-R2 among substituent Y,alkyl R1 and alkyl R2,can be expressed by three parts, φ[R2]φ[R1Y], φ[R1]φ[YR2],and ψ[R1]ψ[R2],with which an extended expression Eq.(2)is derived to express the ΔfH0of R1-Y-R2.The correlation expressions(19)and(20)indicate that this method is rational and effective.The ΔfH0(g)values calculated by Eqs.(19,20)have the same accuracy as those computed by G3 and G3MP2 model chemistries for the compunds thioether,secondary amines,ethers,ketones,and esters.Furthermore,the method of this work can avoid a mass of bothersome calculations for searching an appropriate model,and its parameters are easily obtained.The results also proved that the interaction potential index IPI(X)derived from monosubstituted straight-chain alkanes RX can be used well in the estimation of the enthalpies of formation for R1-Y-R2.

Supporting Information: With Eqs.(19,20),the ΔfH0(g)of 800 two-direction extending compounds were predicted and listed.This information is available free of charge via the internet at http://www.whxb.pku.edu.cn.

(1)Wiberg,K.B.;Waldron,R.F.J.Am.Chem.Soc.1991,113,7697.doi:10.1021/ja00020a036

(2) Laurencelle,N.;Pacey,P.D.J.Am.Chem.Soc.1993,115,625.doi:10.1021/ja00055a035

(3) Milburn,R.K.;Rodriquez,C.F.;Hopkinson,A.C.J.Phys.Chem.B 1997,101,1837.doi:10.1021/jp962303e

(4)Herndon,W.C.;Biedermann,P.U.;Agranat,I.J.Org.Chem.1998,63,7445.doi:10.1021/jo981280s

(5)Zheng,K.C.;Kuang,D.B.;Yun,F.C.;He,F.Acta Phys.-Chim.Sin.2000,16,133.[鄭康成,匡代彬,云逢存,何 峰.物理化學學報,2000,16,133.]doi:10.3866/PKU.WHXB20000208

(6)Zheng,K.C.;Zhang,Z.Q.;Shen,Y.;Yun,F.C.Acta Phys.-Chim.Sin.2001,17,448.[鄭康成,張仲欽,沈 勇,云逢存.物理化學學報,2001,17,448.]doi:10.3866/PKU.WHXB20010514

(7) Sorkhabi,O.;Qi,F.;Rizvi,A.H.;Suits,A.G.J.Am.Chem.Soc.2001,123,671.doi:10.1021/ja0017312

(8)Yang,F.;Wang,Z.;Huang,Y.;Ding,X.J.Chem.Inf.Comput.Sci.2003,43,753.doi:10.1021/ci025663+

(9)Yang,F.;Wang,Z.;Huang,Y.;Zhou,P.J.Chem.Inf.Comput.Sci.2003,43,1337.doi:10.1021/ci0340512

(10) Exner,O.;B?hm,S.J.Comput.Chem.2004,25,1979.doi:10.1002/jcc.v25:16

(11)Emel'yanenko,V.N.;Kabo,G.J.;Verevkin,S.P.J.Chem.Eng.Data 2006,51,79.doi:10.1021/je050230z

(12) Cao,C.Z.;Liu,J.L.Acta Phys.-Chim.Sin.2007,23,955.[曹晨忠,劉金玲.物理化學學報,2007,23,955.]doi:10.3866/PKU.WHXB20070632

(13) Bond,D.J.Org.Chem.2007,72,7313.doi:10.1021/jo071213a

(14)Thalladi,V.R.;Weiss,H.C.;Blalser,D.;Boese,R.;Nangia,A.;Desiraju,G.R.J.Am.Chem.Soc.1998,120,8702.doi:10.1021/ja981198e

(15) Glaser,R.J.Org.Chem.2001,66,771.doi:10.1021/jo001241s

(16)Ju,X.H.;Li,Y.M.;Xiao,H.M.J.Phys.Chem.A 2005,109,934.doi:10.1021/jp045071p

(17)Gung,B.W.;Zou,Y.;Xu,Z.;Amicangelo,J.C.;Irwin,D.G.;Ma,S.;Zhou,H.C.J.Org.Chem.2008,73,689.doi:10.1021/jo702170j

(18) Mathieu,D.J.Chem.Theory Comput.2012,8,1295.doi:10.1021/ct2006083

(19) Jabloński,M.J.Phys.Chem.A 2012,116,3753.doi:10.1021/jp300993b

(20) (a)Istomin,B.I.;Palm,V.A.Reakts.Sposobnost Organ.Soedin.(Tartu)1971,8,845.(b)Istomin,B.I.;Palm,V.A.Reakts.Sposobnost Organ.Soedin.(Tartu)1972,9,433.(c)Istomin,B.I.;Palm,V.A.Reakts.Sposobnost Organ.Soedin.(Tartu)1972,9,469.(d)Istomin,B.I.;Palm,V.A.Reakts.Sposobnost Organ.Soedin.(Tartu)1972,9,847.

(21) Cao,C.Z.;Gao,S.Acta Phys.-Chim.Sin.2005,21,1028.[曹晨忠,高 碩.物理化學學報,2005,21,1028.]doi:10.3866/PKU.WHXB20050917

(22) Cao,C.Z.;Gao,S.;Zeng,R.J.J.Mol.Struct.-Theochem 2005,728,85.doi:10.1016/j.theochem.2005.05.008

(23)Cao,C.Z.QSAR Comb.Sci.2008,27,555.

(24)Wu,Y.X.;Cao,C.Z.;Yuan,H.Chin.J.Chem.Phys.2012,25(2),153.doi:10.1088/1674-0068/25/02/153-160

(25) Cao,C.Z.;Li,Z.L.J.Chem.Inf.Comput.Sci.1998,38,1.doi:10.1021/ci9601729

(26) Cao,C.Z.Substituent Effects in Organic Chemistry;Science Press:Beijing,2003.[曹晨忠.有機化學中的取代基效應.北京:科學出版社,2003.]

(27) Cao,C.Z.;Liu,L.J.Chem.Inf.Comput.Sci.2004,44,678.doi:10.1021/ci034266b

(28)Haynes,W.M.CRC Handbook of Chemistry and Physics,91st ed.;CRC Press:Boca Raton,FL,2010-2011.

(29) Domalski,E.S.;Hearing,E.D.J.Phys.Chem.Ref.Data 1993,22,805.doi:10.1063/1.555927

猜你喜歡
實驗室
電競實驗室
電子競技(2020年8期)2020-12-23 04:09:40
電競實驗室
電子競技(2020年7期)2020-10-12 10:45:48
電競實驗室
電子競技(2020年5期)2020-08-10 08:43:10
電競實驗室
電子競技(2020年4期)2020-07-13 09:18:06
電競實驗室
電子競技(2020年2期)2020-04-14 04:40:38
電競實驗室
電子競技(2020年11期)2020-02-07 02:49:36
電競實驗室
電子競技(2020年9期)2020-01-11 01:06:21
電競實驗室
電子競技(2020年10期)2020-01-11 01:06:06
電競實驗室
電子競技(2019年22期)2019-03-07 05:17:26
電競實驗室
電子競技(2019年21期)2019-02-24 06:55:52
主站蜘蛛池模板: 久久婷婷五月综合97色| 欧美一级大片在线观看| 国产高清免费午夜在线视频| 97久久人人超碰国产精品| 一本二本三本不卡无码| 在线毛片免费| 国产精品欧美亚洲韩国日本不卡| 欧美色图第一页| 狠狠亚洲五月天| 国产成人高清精品免费5388| 97视频精品全国在线观看| 日韩无码精品人妻| 欧美中文一区| 波多野吉衣一区二区三区av| 国产亚洲日韩av在线| 人妻精品久久无码区| 国产玖玖视频| 毛片网站在线看| 精品视频一区在线观看| 人妻免费无码不卡视频| 国产一区二区福利| 72种姿势欧美久久久大黄蕉| 99国产精品免费观看视频| 亚洲女同欧美在线| a色毛片免费视频| 超碰aⅴ人人做人人爽欧美| 国产噜噜噜| av性天堂网| 在线观看免费AV网| 免费在线播放毛片| 欧美日韩亚洲国产| 制服丝袜亚洲| av一区二区三区在线观看 | 免费av一区二区三区在线| 美女被操91视频| 日韩无码一二三区| 亚洲经典在线中文字幕| 精久久久久无码区中文字幕| 亚洲高清中文字幕| 成年片色大黄全免费网站久久| 久久综合九色综合97网| 国产亚卅精品无码| 日韩色图区| 亚洲专区一区二区在线观看| 亚洲毛片网站| 国产精品尹人在线观看| 国模粉嫩小泬视频在线观看| 成人精品在线观看| 久久婷婷色综合老司机| 日韩免费视频播播| 人妖无码第一页| 91无码人妻精品一区二区蜜桃| 亚洲天堂在线免费| 性视频久久| 黄色网站不卡无码| 国产剧情无码视频在线观看| 在线精品亚洲国产| 国产精品蜜臀| 亚洲人成在线免费观看| 亚洲欧洲综合| 波多野结衣一区二区三区四区| 国产欧美另类| 91人妻在线视频| AV不卡在线永久免费观看| 日韩在线播放中文字幕| 国产在线一区视频| 成人年鲁鲁在线观看视频| 国产黄在线观看| 国产免费人成视频网| 91精品啪在线观看国产60岁| 五月天久久综合| 欧美激情综合| 久久久久亚洲av成人网人人软件 | 久久中文字幕2021精品| 欧美色图第一页| 亚洲色图在线观看| 国产永久在线视频| 一级毛片免费观看不卡视频| 亚洲电影天堂在线国语对白| 国产精品久久久久久久久久久久| 国产成人三级在线观看视频| 亚洲精品视频网|