摘要:針對神經網絡、支持向量機等方法對數據樣本容量要求較高的問題,以及一般時間序列預測模型對最大負荷等隨機因素擬合不足的問題,應用時間序列的季節乘法模型對地區月度最大負荷做預測,并用GARCH模型對預測誤差進行修正.用某電網的真實數據作案例,結果表明,誤差率僅為2%,預測精度良好.相比修正前的模型,誤差率下降0.5%,證明誤差修正模型有效.
關鍵詞:月最大負荷預測;時間序列乘法模型;GARCH模型;誤差修正
中圖分類號:TM715,F224 文獻標識碼:A
The Multiplicative Model in Time Series and GARCH
Error Amending Model and Its Application
YANG Shang-dong1, LIU Jin-peng2, GUO Hao-chi2
(1. Research Department of Management Consulting,State Grid Energy Research Institute,Beijing 100052,China;
2. School of Economics and Management, North China Electric Power Univ, Beijing 102206, China)
Abstract: ANN and SVM forecasting models need large sample data, and the traditional time series forecasting model cannot fit sufficiently the biggest load due to random factors. And in order to overcome the shortcomings as mentioned, this paper applied the season-multiplicative model in time series to forecast the monthly peak load of region, and adopted the GARCH model to modify the forecasting error. The application results of the proposed model in a regional power grid show that the forecasting is precise, because the error rate is only 2%. And compared with the unmodified model, the new model’s error rate decreased by 0.5%.
Key words: monthly peak load forecasting; multiplicative model in time series; GARCH model; error amending
由于中長期最大負荷預測本身存在數據量比較少的特點[1], 因而需要大樣本的神經網絡法和支持向量機等智能方法并不適用[2].相反,傳統的時間序列模型可較好地描述最大負荷這一隨機過程[3].但單用時間序列建模預測,因未考慮到的一些因素, 預測的殘差可能存在自回歸現象,故預測效果往往不理想[4].GARCH模型為自回歸條件異方差模型[5],能很好地消除預測殘差存在的自回歸現象[6].基于最大負荷數據的單一性、有限性以及季節性,本文將先用時間序列模型對最大負荷進行擬合,在此基礎上再用GARCH模型對擬合誤差做修正,以提高預測精度.
4 結 論
1)通過實例驗證,將時間序列乘法模型應用在月最大負荷預測上,具有良好的擬合和預測能力.
2)用GARCH模型修正預測誤差,在原先基礎上消除了預測誤差的自回歸,具有良好的擬合以及預測能力.
參考文獻
[1] 康重慶,夏清,張伯明.電力系統負荷預測研究綜述與發展方向的探討[J].電力系統自動化,2004,28(7):1-11.
KANG Chong-qing, XIA Qing,ZHANG Bo-ming.Review of power system load forecasting and development[J].Automation of Electric Power Systems,2004,28(7):1-11.(In Chinese)
[2] 牛東曉,谷志紅,邢棉,等.基于數據挖掘的 SVM 短期負荷預測方法研究[J].中國電機工程學報,2006,26(18):6-12.
NIU Dong-xiao,GU Zhi-hong,XING Mian,et al. Study on forecasting approach to short-term load of SVM based on data mining [J].Proceedings of CSEE,2006,26(18):6-12. (In Chinese)
[3] ZHANG Xun,LAI K K, WANG Shou-yang.A new approach for crude oil price analysis based on Empirical Mode Decomposition[J].Energy Economics,2008,30(3):905-918.
[4] 徐聰穎,廖峰,陳震海.灰色組合模型在中長期電力負荷預測中的應用[J]. 電力需求側管理,2011,13(2):20-23.
XU Cong-ying,LIAO Feng,CHEN Zhen-hai. Combination gray model in mid-term and long-term load forecasting [J]. Power DSM,2011,13(2):20-23. (In Chinese)
[5] 李媛媛,牛東曉,乞建勛. 基于因散經驗模式分解的電力負荷混合預測方法[J]. 電網技術, 2008,32(8):58-62.
LI Yuan-yuan,NIU Dong-xiao,QI Jian-xun. A novel hybrid power load forecasting method based on ensemble empirical mode decomposition[J]. Power System Technology, 2008,32(8): 58-62. (In Chinese)
[6] 高鳳,張德生,郭熊娃. 基于相關系數的變權組合預測模型及其應用[J]. 陜西科技大學學報, 2013,31(3):167-168.
GAO Feng, ZHANG De-sheng, GUO Xiong-wa. Variable weights combination forecast model based on the correlation coefficient and its application [J]. Journal of Shanxi University of Science and Technology 2013,31(3):167-168. (In Chinese)
[7] WU Z,HUANG N E.Ensemble empirical mode decomposition:a noise-assisted data analysis method[J].Advances in Adaptive Data Analysis, 2009, 1(1):1-41.