999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Analysis of equivalent antenna based on FDTD method

2014-02-15 04:35:41YunxingYANGHuichangZHAOCuiDI
Defence Technology 2014年3期

Yun-xing YANG,Hui-chang ZHAO*,Cui DI

School of Electronic and Optical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China

Analysis of equivalent antenna based on FDTD method

Yun-xing YANG,Hui-chang ZHAO*,Cui DI

School of Electronic and Optical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China

An equivalent microstrip antenna used in radio proximity fuse is presented.The design of this antenna is based on multilayer multipermittivity dielectric substrate which is analyzed by fnite difference time domain(FDTD)method.Equivalent iterative formula is modifed in the condition of cylindrical coordinate system.The mixed substrate which contains two kinds of media(one of them is air)takes the place of original single substrate.The results of equivalent antenna simulation show that the resonant frequency of equivalent antenna is similar to that of the original antenna.The validity of analysis can be validated by means of antenna resonant frequency formula.Two antennas have same radiation pattern and similar gain.This method can be used to reduce the weight of antenna,which is signifcant to the design of missile-borne antenna.

Equivalent microstrip antenna;FDTD;Multi-permittivity dielectric

1.Introduction

In recent years,antenna has drawn more and more attention with the increase in demand for military antennas[1,7]. Especially for missile-borne antenna,it is required to be small in size and light in weight.In 1953,Deschamps proposed the conception of microstrip antenna[2].The microstrip antenna has many advantages,such as light weight, small size,and planar structure.Lots of work have been done on its miniaturization[3,4].But few research focused on decreasing the weight of antenna and leaving its basic parameters unchanged under the conditions of same size and thickness.

In this work,another model is proposed.The aims of this work are:a)to preserve the shape of antenna;b)to preserve the of antenna electromagnetic parameters;and c)to decrease the weight of antenna.For this,a substrate with low permittivity and high permittivity media is taken the place of the original substrate,in which air is used as a lower permittivity media(high permittivity media can be any media as its permittivity is higher than original media).The introduction of the air media can effectively decrease the weight of antenna.The analysis of equivalent antenna is based on FDTD.

2.Equivalent antenna structure and FDTD analysis

In1966,K.S.Yee proposed the theory of FDTD[5].FDTD is a novel method which can be used to intuitively and succinctly describe Maxwell's equations.In this method,the electric feld and magnetic feld are included in a threedimensional model(Yee cell).It is used for solving all the problem of electromagnetic feld.A circular antenna is easily integrated into a warhead of bomb compared to rectangle antenna.Therefore the formulae in Refs.[6,7] should be amended in the cylindrical coordinate system(see Fig.1).

Two medium exist in Yee grid(the permittivities are εr1,εr2). From Ampere circuital theorem,we have,

Assuming that the magnetic conductivities of two media are the same.It can be known from the boundary condition of electromagnetic feld that the normal component of magnetic feld on the Interface between the two media is continuous,In cylindrical coordinate system,Eq.(3)could be rewritten as

Fig.1.Yee cell.

In FDTD iteration.

Fig.2.Structure of substrate.

The right side of Eq(5)can be extended to Substituting Eqs.(4),(6)and(7)into Eq.(3),we have,

Fig.3.Resonant frequencies of three antennas.

After the simplifcation,the equivalent permittivity can be obtained

Through the analysis mentioned above,the structure of antenna substrate can be designed,as shown in Fig.2.

3.Discussion of simulation

Through the above analysis,FR4 is chosen for original substrate.The basic parameters of antenna are εr=4.4, R=15 mm,h=2 mm,r=13 mm.Eq(10)shows the relationship between two medium.Table 1 lists the parameters of equivalent antennas

Table 1Parameters of equivalent antennas.

Fig.4.S11 with different feed feint.

Fig.5.Original radiation pattern.

Fig.6.Equivalent radiation pattern.

Fig.3 shows that the resonant frequency of original antenna is 3.10 GHz,and the resonant frequencies of the equivalent antennas A and B are also remain unchanged.It can be concluded from the resonant frequency formula that the permittivity is the only factor which has effect on resonant frequency when the radius of radiation patch and the working mode remain the same.So two media can be treated as a single medium which has a same permittivity as that of original medium.The results prove the accuracy of FDTD analysis. Because the position of feed point was not changed in simulation,the S11 parameters ofthe equivalentantenna deteriorated compared to the original antenna.So the equivalent antenna is not exactly equal to the original antenna.The parameters can be improved by changing the position of feed point.Fig.4 shows the S11 parameters after changing the position of feed point.

Fig.5 and 6 show the radiation patterns of equivalent antenna and original antenna.It can be seen from Fig.5 and 6 that the direction and gain of equivalent antenna are similar to those of the original one.This shows that the equivalent antenna can replace the original antenna.

4.Conclusions

A method for decreasing the weight of antenna was proposed in the paper.By means of analysis based on FDTD,air medium and a higher permittivity medium are introduced to take the place of original substrate.The simulation results show that resonant frequency,radiation pattern and gain of equivalent antenna did not change.The air media can be used to reduce the weight of antenna.

Acknowledgement

The author would like to thank the National Natural Science Foundation of China(Grant No.6111168)for the support.

[1]Chen N,Ammann MJ,Qing X,Wu XH,See TSP,Cai A.Planar.IEEE Microw Mag 2006;7(6):63-7.

[2]Krstic M,Kanell Akopoulos I,Kokotovic P.Nonlinear and adaptive control design.New York:Wiley;1995.

[3]Wong KL.Compact and broadband microstrip antennas.John Wiley& Sons Inc;2002.

[4]Yee KS.Numerical solution of initial boundary value problems involving Maxwell equations in isotropic media.IEEE Trans Antennas Propagate 1966;14(3):302-7.

[5]Tafove A,Hagness SC.Computational electrodynamics:the fnite difference time domain method.2nd ed.Norwood,MA:Artech Hoose;2000.

[6]Greengard L,Rokhlin V.A fast algorithm for particle simulation.J Comp Phys 1987;73:325-48.

[7]Wu X,Tan YL,Xu J,Fang A.Research on the model of multilayed multiconductor system with equivalent permittivity,32(2).Journal of Zhejiang University of Technology;2006.p.179-82.

Received 14 January 2014;revised 17 February 2014;accepted 19 March 2014 Available online 31 July 2014

*Corresponding author.

E-mail address:zhaohch@mail.njust.edu.cn(H.C.ZHAO).

Peer review under responsibility of China Ordnance Society.

http://dx.doi.org/10.1016/j.dt.2014.07.005 2214-9147/Copyright?2014,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

Copyright?2014,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

主站蜘蛛池模板: 天天综合网站| 视频国产精品丝袜第一页| 婷婷成人综合| 亚洲黄色视频在线观看一区| 国产喷水视频| 久久婷婷五月综合97色| 亚洲女同欧美在线| 在线另类稀缺国产呦| 中国丰满人妻无码束缚啪啪| 呦女精品网站| 久久综合九九亚洲一区| 青草视频免费在线观看| 久久特级毛片| 福利小视频在线播放| 久久精品丝袜| 精品99在线观看| 欧洲精品视频在线观看| 欧美精品一区在线看| 色综合天天操| 亚洲色图在线观看| 玖玖精品在线| 国产精品色婷婷在线观看| 亚洲成a人片77777在线播放| 国产青青草视频| 国产麻豆福利av在线播放 | 亚洲视频欧美不卡| 亚洲欧美日韩另类在线一| 成人精品在线观看| 欧美中文字幕第一页线路一 | 国产女人在线| 97国产在线播放| 欧洲高清无码在线| 国产精品人莉莉成在线播放| 找国产毛片看| 99精品高清在线播放| 中国毛片网| 六月婷婷综合| 中国国产高清免费AV片| 国产高清又黄又嫩的免费视频网站| 在线va视频| 伊人激情久久综合中文字幕| 日本精品视频一区二区| 亚洲一区二区在线无码| av色爱 天堂网| 一本二本三本不卡无码| 中文成人无码国产亚洲| 日本午夜影院| 老司机午夜精品视频你懂的| 日韩午夜福利在线观看| 国产区91| 国产另类视频| 国产中文一区a级毛片视频| 欧美成人精品一级在线观看| 狠狠亚洲五月天| 婷婷综合缴情亚洲五月伊| 亚洲AV无码精品无码久久蜜桃| 亚洲福利视频网址| 2020国产免费久久精品99| 97精品久久久大香线焦| 青青操视频在线| 秋霞午夜国产精品成人片| 国产免费久久精品44| 国产精品无码影视久久久久久久| 国产精品人成在线播放| 国产天天色| 成人一区专区在线观看| 毛片一区二区在线看| 免费在线a视频| 男女性午夜福利网站| 熟妇人妻无乱码中文字幕真矢织江 | 国产精品免费入口视频| 国产午夜看片| 国产在线一区视频| 亚洲精品自拍区在线观看| 国产农村妇女精品一二区| 少妇极品熟妇人妻专区视频| 国产欧美日韩一区二区视频在线| 中文字幕人成乱码熟女免费| 在线观看亚洲人成网站| 国产成人亚洲精品无码电影| 国产精品区视频中文字幕| 成人午夜视频网站|