999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Analysis of equivalent antenna based on FDTD method

2014-02-15 04:35:41YunxingYANGHuichangZHAOCuiDI
Defence Technology 2014年3期

Yun-xing YANG,Hui-chang ZHAO*,Cui DI

School of Electronic and Optical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China

Analysis of equivalent antenna based on FDTD method

Yun-xing YANG,Hui-chang ZHAO*,Cui DI

School of Electronic and Optical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China

An equivalent microstrip antenna used in radio proximity fuse is presented.The design of this antenna is based on multilayer multipermittivity dielectric substrate which is analyzed by fnite difference time domain(FDTD)method.Equivalent iterative formula is modifed in the condition of cylindrical coordinate system.The mixed substrate which contains two kinds of media(one of them is air)takes the place of original single substrate.The results of equivalent antenna simulation show that the resonant frequency of equivalent antenna is similar to that of the original antenna.The validity of analysis can be validated by means of antenna resonant frequency formula.Two antennas have same radiation pattern and similar gain.This method can be used to reduce the weight of antenna,which is signifcant to the design of missile-borne antenna.

Equivalent microstrip antenna;FDTD;Multi-permittivity dielectric

1.Introduction

In recent years,antenna has drawn more and more attention with the increase in demand for military antennas[1,7]. Especially for missile-borne antenna,it is required to be small in size and light in weight.In 1953,Deschamps proposed the conception of microstrip antenna[2].The microstrip antenna has many advantages,such as light weight, small size,and planar structure.Lots of work have been done on its miniaturization[3,4].But few research focused on decreasing the weight of antenna and leaving its basic parameters unchanged under the conditions of same size and thickness.

In this work,another model is proposed.The aims of this work are:a)to preserve the shape of antenna;b)to preserve the of antenna electromagnetic parameters;and c)to decrease the weight of antenna.For this,a substrate with low permittivity and high permittivity media is taken the place of the original substrate,in which air is used as a lower permittivity media(high permittivity media can be any media as its permittivity is higher than original media).The introduction of the air media can effectively decrease the weight of antenna.The analysis of equivalent antenna is based on FDTD.

2.Equivalent antenna structure and FDTD analysis

In1966,K.S.Yee proposed the theory of FDTD[5].FDTD is a novel method which can be used to intuitively and succinctly describe Maxwell's equations.In this method,the electric feld and magnetic feld are included in a threedimensional model(Yee cell).It is used for solving all the problem of electromagnetic feld.A circular antenna is easily integrated into a warhead of bomb compared to rectangle antenna.Therefore the formulae in Refs.[6,7] should be amended in the cylindrical coordinate system(see Fig.1).

Two medium exist in Yee grid(the permittivities are εr1,εr2). From Ampere circuital theorem,we have,

Assuming that the magnetic conductivities of two media are the same.It can be known from the boundary condition of electromagnetic feld that the normal component of magnetic feld on the Interface between the two media is continuous,In cylindrical coordinate system,Eq.(3)could be rewritten as

Fig.1.Yee cell.

In FDTD iteration.

Fig.2.Structure of substrate.

The right side of Eq(5)can be extended to Substituting Eqs.(4),(6)and(7)into Eq.(3),we have,

Fig.3.Resonant frequencies of three antennas.

After the simplifcation,the equivalent permittivity can be obtained

Through the analysis mentioned above,the structure of antenna substrate can be designed,as shown in Fig.2.

3.Discussion of simulation

Through the above analysis,FR4 is chosen for original substrate.The basic parameters of antenna are εr=4.4, R=15 mm,h=2 mm,r=13 mm.Eq(10)shows the relationship between two medium.Table 1 lists the parameters of equivalent antennas

Table 1Parameters of equivalent antennas.

Fig.4.S11 with different feed feint.

Fig.5.Original radiation pattern.

Fig.6.Equivalent radiation pattern.

Fig.3 shows that the resonant frequency of original antenna is 3.10 GHz,and the resonant frequencies of the equivalent antennas A and B are also remain unchanged.It can be concluded from the resonant frequency formula that the permittivity is the only factor which has effect on resonant frequency when the radius of radiation patch and the working mode remain the same.So two media can be treated as a single medium which has a same permittivity as that of original medium.The results prove the accuracy of FDTD analysis. Because the position of feed point was not changed in simulation,the S11 parameters ofthe equivalentantenna deteriorated compared to the original antenna.So the equivalent antenna is not exactly equal to the original antenna.The parameters can be improved by changing the position of feed point.Fig.4 shows the S11 parameters after changing the position of feed point.

Fig.5 and 6 show the radiation patterns of equivalent antenna and original antenna.It can be seen from Fig.5 and 6 that the direction and gain of equivalent antenna are similar to those of the original one.This shows that the equivalent antenna can replace the original antenna.

4.Conclusions

A method for decreasing the weight of antenna was proposed in the paper.By means of analysis based on FDTD,air medium and a higher permittivity medium are introduced to take the place of original substrate.The simulation results show that resonant frequency,radiation pattern and gain of equivalent antenna did not change.The air media can be used to reduce the weight of antenna.

Acknowledgement

The author would like to thank the National Natural Science Foundation of China(Grant No.6111168)for the support.

[1]Chen N,Ammann MJ,Qing X,Wu XH,See TSP,Cai A.Planar.IEEE Microw Mag 2006;7(6):63-7.

[2]Krstic M,Kanell Akopoulos I,Kokotovic P.Nonlinear and adaptive control design.New York:Wiley;1995.

[3]Wong KL.Compact and broadband microstrip antennas.John Wiley& Sons Inc;2002.

[4]Yee KS.Numerical solution of initial boundary value problems involving Maxwell equations in isotropic media.IEEE Trans Antennas Propagate 1966;14(3):302-7.

[5]Tafove A,Hagness SC.Computational electrodynamics:the fnite difference time domain method.2nd ed.Norwood,MA:Artech Hoose;2000.

[6]Greengard L,Rokhlin V.A fast algorithm for particle simulation.J Comp Phys 1987;73:325-48.

[7]Wu X,Tan YL,Xu J,Fang A.Research on the model of multilayed multiconductor system with equivalent permittivity,32(2).Journal of Zhejiang University of Technology;2006.p.179-82.

Received 14 January 2014;revised 17 February 2014;accepted 19 March 2014 Available online 31 July 2014

*Corresponding author.

E-mail address:zhaohch@mail.njust.edu.cn(H.C.ZHAO).

Peer review under responsibility of China Ordnance Society.

http://dx.doi.org/10.1016/j.dt.2014.07.005 2214-9147/Copyright?2014,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

Copyright?2014,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

主站蜘蛛池模板: 国产亚洲视频免费播放| 国产欧美日韩精品综合在线| 亚洲欧洲日本在线| 四虎永久在线精品影院| 国产精品成人免费视频99| 就去吻亚洲精品国产欧美| 91在线激情在线观看| 久久特级毛片| 一本大道无码高清| 免费人成视网站在线不卡| 国产无码性爱一区二区三区| 2020久久国产综合精品swag| 伊人久久大香线蕉成人综合网| 六月婷婷精品视频在线观看| 亚洲无码高清一区| 久久视精品| 国产视频一区二区在线观看| 特级做a爰片毛片免费69| 亚洲男人的天堂久久精品| 久久一本日韩精品中文字幕屁孩| 特级毛片免费视频| 自偷自拍三级全三级视频 | 亚洲区第一页| 亚洲国产欧美目韩成人综合| 精品国产中文一级毛片在线看| 午夜啪啪福利| yjizz视频最新网站在线| 一级成人a毛片免费播放| 三级毛片在线播放| 久久亚洲高清国产| 四虎影视无码永久免费观看| 99精品欧美一区| 亚洲精品中文字幕午夜| 日本精品视频一区二区| 无码国产伊人| 一区二区理伦视频| 国产一级在线观看www色 | 91网在线| 久久99精品国产麻豆宅宅| 99久久国产综合精品2020| 久久久久亚洲精品成人网| 国产av色站网站| 2021国产乱人伦在线播放| 中文字幕亚洲综久久2021| 久久久噜噜噜| 欧洲日本亚洲中文字幕| 97视频精品全国在线观看 | 免费视频在线2021入口| 久久亚洲精少妇毛片午夜无码| 91啪在线| 天堂成人在线| 在线观看免费黄色网址| 最新国产午夜精品视频成人| 欧美一区国产| 欧美激情视频一区二区三区免费| 日韩人妻少妇一区二区| 亚洲第一区在线| 国产精品自拍露脸视频| 91精品国产自产91精品资源| 日本手机在线视频| 亚洲第一成年免费网站| 亚洲天堂在线视频| 亚洲人成网18禁| 一级毛片视频免费| 毛片久久网站小视频| 成人免费午间影院在线观看| 国产午夜福利在线小视频| 日韩国产欧美精品在线| 欧美色99| 国产精品久久自在自线观看| 无码中文字幕精品推荐| 狠狠五月天中文字幕| 日韩美女福利视频| 国产噜噜噜视频在线观看| 欧美不卡二区| 一级全免费视频播放| 亚洲国产欧美国产综合久久| 无套av在线| 亚洲人成影视在线观看| 日韩美毛片| 71pao成人国产永久免费视频| 波多野结衣AV无码久久一区|