999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

A blowup criterion for the 3D generalizedMHD system with zero magnetic diffusivity

2014-03-20 08:26:38JishanFanGenNakamuraYongZhou

Jishan Fan, Gen Nakamura, Yong Zhou

(1.Department of Applied Mathematics, Nanjing Forestry University, Nanjing 210037, China;2.Department of Mathematics, Inha University, Incheon 402-751, Korea;3.School of Mathematics, Shanghai University of Finance and Economics, Shanghai 200433, China;4.Department of Mathematics, Faculty of Science King Abdulaziz University, Jeddah 21589, Saudi Arabia)

1 Introduction

In this paper,we consider the following 3D generalized MHD system:

?tu+u·u+b,

(1)

?tb+u·b-b·u+η(-Δ)βb=0,

(2)

divu=divb=0,

(3)

(u,b)(·,0)=(u0,b0)(·) in3.

(4)

Hereuis the fluid velocity field,πis the pressure andbis the magnetic field.μ≥0,α>0,β>0 andη≥0 are physical constants.

(5)

are satisfied.

The aim of this paper is to prove a new blowup criterion.We will prove

Theorem1Letμ=1,η=0 andu0,b0∈Hs(3) with divu0=divb0=0 andandωsatisfy

(6)

with 00.

Remark1Similar result has been proved in the 2D case by Z.Ye[6].

Remark2Testing (1) byuand using (3),we see that

(b·)b·udx.

(7)

Similarly,testing (2) byband using (3),we find that

(b·)u·bdx.

(8)

Summing up (7) and (8) and noting the cancellation of the last terms on the right hand side of (7) and (8),we have the well-known energy equality

(9)

which implies

u∈L2(0,T;Hα)

and thus

(10)

Our proof will use the following bilinear commutator estimates due to Kato-Ponce[7]:

‖Λs(fg)-fΛsg‖Lp≤C(‖f‖Lp1‖Λs-1g‖Lq1+‖Λsf‖Lp2‖g‖Lq2),

(11)

We will also use the following logarithmic Sobolev inequality [8]

(12)

2 Proof of Theorem 1

This section is devoted to the proof of Theorem 1.We only need to establish a priori estimates.

First,we still have (9).

Due to (6),one concludes that for any small constant>0,there existsT*

For anyT*

(b·)u·bdx≤‖

whence

(13)

Solving (13) in the interval [T*,t],one has

‖b(·,t)‖Lp≤‖b(·,T*)‖Lp(e+y(t))C0

(14)

withCandC0independent ofp.

Takingp→+∞ in (14),we see that

‖b‖L∞≤C(e+y(t))C0.

(15)

Testing (1) by -Δuand using (3),we infer that

(16)

Similarly,testing (2) by -Δband using (3),we deduce that

(17)

Summing up (16) and (17) and noting the cancellation of the last term on the right hand side of (16) and (17),we obtain

which yields

(18)

Testing (1) byut+(-Δ)αuand using (3),(15) and (18),we get

(b·b-u·u)(ut+Λ2αu)dx≤

(‖b‖L∞‖b‖L2+‖u‖L6‖u‖L3)(‖ut‖L2+‖Λ2αu‖L2)≤

C(‖b‖L∞‖b‖L2+‖u‖L6‖u‖H1+α)(‖ut‖L2+‖Λ2αu‖L2)≤

which implies

(19)

Testing (2) bybtand using (3),(15) and (18),we deduce that

C(e+y(t))C0.

(20)

Applying ?tto (1),testing byutand using (3),(15),(18),(19) and (20),we have

which yields

(21)

Testing (1) by Λ2αuand using (3),(15),(18),(19) and (21),we have

‖Λ2αu‖L2≤C(‖ut‖L2+‖b‖L∞‖b‖L2+‖u‖L6‖u‖L3),

from which and the Gagliardo-Nirenberg inequality

‖u‖L3≤C‖

we have

‖Λ2αu‖L2≤C(e+y(t))C0.

(22)

Applying Λsto (1),testing by Λsuand using (3),we get

(u·u)-u·Λsu)Λsudx+

(23)

Applying Λsto (2),testing by Λsband using (3),we have

(u·b)-u·Λsb)Λsbdx+

(24)

Summing up (23) and (24) and noting the cancellation of the last term on the right hand side of (23) and (24),we have

I1+I2+I3+I4.

(25)

Using (11) and (12),we boundI1as follows.

I1≤C‖

Using (11) and the following Gagliardo-Nirenberg inequalities

we boundI2as follows.

I2≤C‖

Similarly we boundI3+I4as follows.

I3+I4≤C‖b‖L6‖Λsb‖L2‖Λsu‖L3

I5can be bounded by the same method as that ofI2.

Inserting the above estimates into (25) and takingsmall enough and using the Gronwall inequality,we arrive at

‖u‖L∞(0,T;Hs)+‖u‖L2(0,T;Hs+α)≤C,

(26)

‖b‖L∞(0,T;Hs)≤C.

(27)

(28)

which gives

‖Λ2αu‖L∞(0,T;L2)≤C.

Then it is easy to infer that

‖b‖L∞(0,T;W1,6)≤C.

This completes the proof.

:

[1] J. Wu.Generalized MHD equations [J].J Differential Equations,2003,195:284-312.

[2] J. Wu.Regularity criteria for the generalized MHD equations [J].Comm Partial Differential Equations,2008,33:285-306.

[3] J. Fan,H. Gao,G. Nakamura.Regularity criteria for the generalized magnetohydrodynamic equations and the quasi-geostrophic equations[J].Taiwanese J Math,2011,15(3):1059-1073.

[4] Y. Zhou.Regularity criteria for the generalized viscous MHD equations [J].Ann I H Poincare-AN,2007,24:491-505.

[5] J. Wu.Global regularity for a class of generalized magnetohydrodynamic equations [J].J Math Fluid Mech,2011,13:295-305.

[6] Z. Ye.Two regularity criteria to the 2D generalized MHD equations with zero magnetic diffusivity [J].J Math Anal Appl.(in press).

[7] T. Kato,G. Ponce.Comutator estimates and the Euler and Navier-Stokes equations [J].Comm Pure Appl Math,1988,41:891-907.

[8] H. Kozono,T. Ogawa,Y. Taniuchi.The critical Sobolev inequalities in Besov spaces and regularity criterion to some semilinear evolution equations [J].Math Z,2002,242:251-278.

主站蜘蛛池模板: 高潮毛片免费观看| 亚洲最大看欧美片网站地址| 91小视频在线观看免费版高清| 天天综合网站| 亚洲欧洲综合| 99国产在线视频| 国产亚洲第一页| 亚洲 日韩 激情 无码 中出| 国产一在线观看| 伊人久久大香线蕉aⅴ色| 国产91丝袜在线播放动漫 | 天堂成人在线视频| 亚洲色中色| 福利小视频在线播放| 成人年鲁鲁在线观看视频| 久久国产香蕉| 99人体免费视频| 亚洲精品在线91| 亚洲一区网站| 国产成人超碰无码| 日本高清免费不卡视频| 欧美成人精品高清在线下载| 亚洲日韩在线满18点击进入| 国产高潮流白浆视频| 亚洲成a人片77777在线播放| 免费国产不卡午夜福在线观看| 试看120秒男女啪啪免费| 国产91蝌蚪窝| 午夜无码一区二区三区| 伊人久热这里只有精品视频99| 国产成人AV男人的天堂| a级毛片一区二区免费视频| 亚洲av无码牛牛影视在线二区| a毛片免费在线观看| 久久久波多野结衣av一区二区| V一区无码内射国产| 日本在线欧美在线| 97人人模人人爽人人喊小说| 婷婷色狠狠干| 综合色婷婷| 在线免费a视频| 久久99国产精品成人欧美| WWW丫丫国产成人精品| 亚洲精品自产拍在线观看APP| 在线无码私拍| 欧美一级一级做性视频| 国产在线精品99一区不卡| 日韩在线视频网| 欧美性精品| 亚洲品质国产精品无码| 国产成人精品三级| 国产成人av一区二区三区| 麻豆精品在线| 亚洲精品在线91| 日本成人一区| 中文字幕精品一区二区三区视频 | 欧美亚洲日韩中文| 免费看一级毛片波多结衣| 国产成人三级在线观看视频| 久夜色精品国产噜噜| 久久大香伊蕉在人线观看热2| 国产精品亚洲一区二区三区在线观看| 国产免费网址| 人妻丰满熟妇av五码区| 成人毛片免费在线观看| 人妻精品久久久无码区色视| 天堂在线视频精品| 久久国产毛片| 成人在线观看不卡| 中文精品久久久久国产网址 | 欧美区一区二区三| 亚洲综合天堂网| 亚洲品质国产精品无码| 国产精品久久自在自线观看| 色综合久久无码网| 日本欧美视频在线观看| 国产a v无码专区亚洲av| 国产伦精品一区二区三区视频优播 | 国产精品人成在线播放| 亚洲无码37.| 色视频国产| аⅴ资源中文在线天堂|