999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Stability criteria for delay differential-algebraic equations

2014-03-20 03:18:38LIULinglingFANNiSUNLeping

LIU Lingling, FAN Ni, SUN Leping

(College of Mathematics and Sciences,Shanghai Normal University,Shanghai 200234,China)

1 Introduction

f(s)=f(x,y)=u(x,y)+iv(x,y)

(1)

Theorem1.1[1]If for any(x,y)∈?W,the real partu(x,y)in (1)does not vanish,thenf(x,y)≠0 for any(x,y)∈W.

Theorem 1.2 is an extension of Theorem 1.1.

2 Delay independent stability of DDAEs

Now we deal with the asymptotic stability of DDAEs,

Ax′(t)=Bx(t)+Cx(t-τ),

(2)

whereA,B,C∈d×dare constant real matrices,Ais singular andτ>0 stands for a constant delay.For the stability of the system(2),we investigate its characteristic equation

det[λA-B-Ce-λτ]=0.

(3)

(4)

(5)

then(3)may be written as

(6)

wherez=x+iy.By the above assumption that Res<0?Reλ<0 is valid.

The following two lemma are well-known.

Lemma2.1[2]If the real parts of all the characteristic roots of(5)are less than zero,then the system(2)is asymptotically stable; That is,the solutionx(t)of (2)satisfiesx(t)→0 ast→∞.

Lemma2.2[3]LetA∈d×dandB∈d×d.If the inequality |A|≤Bholds,then the inequalityρ(A)≤ρ(B)is valid.Here the order relation of matrices of the same dimensions should be interpreted componentwise.|A| stands for the matrix whose component is replaced by the modulus of the corresponding component ofA,andρ(A)means the spectral radius ofA.

For a complex matrixW,letμ(W)be the logarithmic norm ofW.

Lemma2.3[3]For each eigenvalue of a matrixW∈d×d,the inequality

-μp(-W)≤Reλi(W)≤μp(W)

holds.

Lemma2.4[4]LetU,Vben-by-krectangular matrices withk≤nandAbe ann-by-nmatrix.Then

T=I+VTA-1U

is nonsingular if and only ifA+UVTis nonsingular.In this case,we have

(A+UVT)-1=A-1-A-1UT-1VTA-1.

The following lemma states a sufficient condition for the stability of (2).

(7)

holds,the system (2)is asymptotically stable.

Applying the properties of the logarithmic norm,Lemma 2.4 and Lemma 2.5,we have

This,however,contradicts the condition.Hence the proof is completed.

The following theorem gives a region including all the roots of (5)with nonnegative real parts when the condition of Lemma 2.6 fails.

(i) If we have the estimation

then the inequalities

and

hold.

(ii) If we have the estimation

define a positive numberβsatisfying

Then the inequalities

and

Proof(i) A discussion similar to that of Lemma 2.6 yields

Next,the imaginary part of an eigenvalue of a matrixAB-1is equal to the real part of an eigenvalue of -iAB-1.The second inequality holds.

(ii) By Lemma(2.3)

(8)

A derivation similar to that in (i) leads to

(9)

Here the truth of the last inequality is attained form the following.

Hence,taking (9)into consideration,we have

Iteration

and the monotonicity

ensure that the limit of the series {βj} is equal toβ,whereβis a positive number satisfying

Therefore the first inequality holds.In a similar manner we can get the second inequality.

|s|≤ρ(|A|·|B-1|·(I-|CB-1|)-1)

holds.

ProofBy the assumption above,there exists an integerj(1≤j≤d)such that

This implies the inequality

It is obvious that

Due to Lemma 2.2,we have the conclusion.

3 Delay-dependent stability of DDAEs:boundary criteria

Let

By virtue of Lemma 2.6,ifγ<0,the system(2)is Delay-independent asymptotically stable.Ifγ≥0,the system (2)may be stable or unstable.We consider the stability of (2)whenγ≥0.

(i) Ifβ0≤0,then we put

(ii) Ifβ0>0,then we put

whereβis a root of the equation

Under the above notation we turn our attention to the following three kinds of bounded regions in thes-plane.

Definition1Letl1,l2,l3andl4denote the segments {(E0,y):F0≤y≤F},{(x,F):E0≤x≤E},{(E,y):F0≤y≤F} and {(x,F0):E0≤x≤E},respectively.Furthermore,l=l1∪l2∪l3∪l4and letDbe the rectangular region surrounded byl.

Definition2LetR=ρ(|A|·|B-1|·(I-|CB-1|)-1).LetKdenote the circular region with radiusRcentered at the origin of the plane ofC.

K={(r,θ):r≤R,0≤θ≤2π}.

A necessary and sufficient condition for the delay-independent stability of the system(2)is presented in [5].The following two theorems give criteria for the delay-dependent stability of the system(2).We apply Theorem 1.1 and Theorem 1.2 to prove them respectively.

Theorem3.1If for any (x,y)∈?T,the real partU(x,y)in(6)does not vanish,then the system (2)is asymptotically stable.

Due to Theorem 2,we can further extend the above result as follows.

Theorem3.2Assume that for any (x,y)∈?T,there exists a real constantλsatisfying

U(x,y)+λV(x,y)≠0.

Then the system (2)is asymptotically stable.

The proof is analogous to Theorem 3.1.

We give two criteria for the delay-dependent stability of the linear delay system(2).Theorem 2.1 and Theorem 2.2 show that the unstable characteristic roots of the system (2)are located in some specified bounded region in the complex plane,while Theorem 3.1 and Theorem 3.2 show that it is sufficient to check certain conditions on its boundary to exclude the possibility of such roots from the region.Theorem 1.1 and Theorem 1.2 provide general and simple criteria for the nonexistence of zeros of an analytic function in any boundary region.

:

[1] HU G D.Stability of discrete-delay systems:boundary criteria[J].Applied Mathematics and Computation,1996,80:95-104.

[2] KUANG J X,TIAN H J.The asymptotic behaviour of theoretical and numerical solution for the differential equations with several delay terms[J].Journal of Shanghai Normal University:Natural Sciences,1994,23(Math Supl):1-9.

[3] DESOER C A,VIDYASAGAR M.Feedback system:input-output properties[M].New York:Academic Press,1997.

[4] GOLUB G,VAN LOAN C F.Matrix computations[M].3rd edition.Baltimore:Johns Hopkins University Press,1996.

[5] QIU L,KUANG J X.On the LD-stability of the Nonlinear Systems in MDBMs[J].Journal of Shanghai Normal University:Natural Sciences,1996,25(4):6-11.

[6] HU G D,MITSUI T.Stability of Linear Systems with Matrices Having Common Eigenvectors[J].Japan J Indust Appl Math,1996,13:487-494.

[7] LU L H.Numerical stability of theθ-methods for systems of differential equations with serveral delay terms[J].Journal of Computational and Applied Mathematics,1991.34:292-304.

[8] SUN L P.ThePm-stability of multistep runge-kutta methods for delay differential equations[J].Journal of Shanghai Normal University:Natural Sciences,1997,26(4):17-22.

主站蜘蛛池模板: 88av在线播放| 婷婷久久综合九色综合88| 国产精品99在线观看| 亚洲成年人网| 国产精品成人AⅤ在线一二三四| 久久国产精品嫖妓| 亚洲成在人线av品善网好看| 美女视频黄频a免费高清不卡| 自拍亚洲欧美精品| 亚洲欧美日韩中文字幕在线一区| 日韩国产亚洲一区二区在线观看| 熟妇丰满人妻| 国产青榴视频在线观看网站| 中文字幕在线观| 992Tv视频国产精品| 精品亚洲欧美中文字幕在线看| 日韩色图在线观看| 亚洲成a人片7777| 亚洲aⅴ天堂| 国产精品自在线拍国产电影| 99热这里都是国产精品| 欧美第一页在线| 区国产精品搜索视频| 尤物亚洲最大AV无码网站| 手机永久AV在线播放| 青青草综合网| 欧美国产在线看| 青青热久免费精品视频6| 色综合天天操| 亚洲青涩在线| 国产精品嫩草影院视频| 亚洲中文字幕久久精品无码一区 | 亚洲成肉网| 精品久久久久无码| 亚洲天堂视频在线免费观看| jizz在线观看| av一区二区无码在线| 国产无码精品在线播放| 一级高清毛片免费a级高清毛片| 热热久久狠狠偷偷色男同| 天天视频在线91频| 国产精品分类视频分类一区| 精品黑人一区二区三区| 亚洲中文字幕23页在线| 曰AV在线无码| 99久久精品免费观看国产| aa级毛片毛片免费观看久| 国产精品视频导航| 波多野结衣二区| 亚洲欧美自拍视频| 中国精品久久| 亚洲国产中文精品va在线播放| 成人在线亚洲| 亚洲国产精品一区二区高清无码久久| 午夜视频免费一区二区在线看| 精品伊人久久久久7777人| 国产女人18毛片水真多1| 园内精品自拍视频在线播放| 青青青国产免费线在| 国产成人综合日韩精品无码不卡| 尤物午夜福利视频| 57pao国产成视频免费播放| 国产成人亚洲综合a∨婷婷| 国产黑人在线| 69国产精品视频免费| 免费人成又黄又爽的视频网站| 国产高清在线精品一区二区三区 | 日韩在线观看网站| 毛片免费在线视频| 青青久久91| 精品一区二区久久久久网站| 久久99热这里只有精品免费看| 色亚洲激情综合精品无码视频 | 亚洲乱伦视频| 久99久热只有精品国产15| 国产精品亚洲专区一区| 99在线观看免费视频| 91精品伊人久久大香线蕉| 欧美精品1区| 97色婷婷成人综合在线观看| 国产激情无码一区二区免费| 精品免费在线视频|