錢 焜,溫海深,遲美麗,倪 蒙,張冬茜,丁玉霞
(中國海洋大學水產學院,山東 青島266003)
花鱸(Lateolabraxjaponicus),俗稱七星鱸、鱸魚、寨花等,廣泛分布于我國、朝鮮和日本沿海,因其肉質鮮美,頗受廣大消費者喜愛。它適溫范圍廣,在我國南北方皆可養殖;其適鹽性也強,海水和淡水均可養殖。因此,是我國重要的網箱與池塘養殖經濟魚類之一[1]。國內外關于花鱸的研究包括生態學、繁殖生理學、營養生理學、攝食行為學、遺傳育種等,尤其以養殖領域研究的最全面[1-3],包括親魚培育、海水網箱養殖、工廠化育苗、淡水養殖技術等,但是對于分子生理學,特別是類胰島素生長因子(IGF)信號系統的研究卻未見報道。
IGF信號系統是一個進化上較為保守的信號途徑,該信號系統由 2個配體(IGF-l,IGF-2)、2 個受體(IGF-1R,IGF-2R)和6個IGF結合蛋白(IGF-binding proteins,IGFBPs)組成。研究表明,該信號系統對于調節生物體內胚胎發育和分化、以及維持成體穩態有重要作用[4-5]。IGF-1是一種在結構和功能上與胰島素相關的多肽,除了具有產生胰島素代謝作用外,人類的IGF-1具有多種生物學效應,包括激發細胞分裂和分化,抑制蛋白質降解和細胞凋亡,作為內分泌因子來調節生長過程等[6-8]。許多研究結果表明,肝臟是IGF-1主要的分泌器官[9],但IGF-1不僅在肝臟中表達,在一些其他的器官中也有表達,而且大都是通過自分泌和旁分泌方式釋放[10-11]。IGF-1前肽由信號肽、B、C、A、D結構域和E肽6部分組成,成熟肽由B、C、A和D區4個結構域構成[12]。自20世紀末以來,硬骨魚類中如:斑馬魚(Daniorerio)[13-14]、牙鲆(Paralichthysolivaceus)[15]、金頭鯛(Sparusaurata)[16]等,已得到了IGF-1cDNA部分和全長基因序列,揭示了IGF-1在進化過程中的保守性。
本文利用逆轉錄聚合酶鏈式反應(RT-PCR)和cDNA末端快速擴增法(RACE)克隆得到了花鱸IGF-1基因cDNA全長序列,并對其氨基酸結構進行了比對分析,采用熒光實時定量PCR技術對花鱸腦、垂體、心臟、鰓、胃、盲腸、腸、頭腎、腎臟、肝臟、性腺(雄)、脾臟和肌肉等13種器官的IGF-1mRNA的表達水平進行了分析,填補了花鱸IGF家族在分子生物學方面的空白,旨在為該基因時空表達特征及具體生理功能提供基礎數據。
花鱸于2010年11月采自青島市市南區南山水產品市場。魚體重(1 196.7±16.8)g,體長(43.6±1.2)cm。解剖后迅速取出腦、垂體、心臟、鰓、胃、盲腸、腸、頭腎、腎臟、肝臟、性腺、脾臟和肌肉13個組織保存于-80℃超低溫冰箱中備用。
1.2.1 總RNA提取和cDNA第一鏈合成 按照Tr-izol Reagent試劑盒說明書提取花鱸各組織總RNA,利用Biodropsis BD-1000核算測定儀測定RNA的濃度以及OD260/OD280,并用普通瓊脂糖凝膠電泳檢測RNA完整性。利用DNaseⅠ去除基因組DNA,測定RNA濃度。cDNA第一鏈利用M-MLV反轉錄酶來合成。
1.2.2 引物設計 參考點帶石斑魚(Epinepheluslanceolatus)、金頭鯛(Sparusaurata)、大馬哈魚(Oncorhynchusketa)等親緣關系較近魚種的IGF-1氨基酸序列,用CODEHOP網站在線設計簡并引物[17],根據克隆得到的片段設計5′特異性引物(IGF-1 5端),以及用于進行巢式PCR的3′特異性引物(IGF-1 3端A和IGF-1 3端B)(引物情況見表1)。

表1 引物序列及其位置Table 1 Nucleotide sequences and positions of oligonucleotide primers
1.2.3 花鱸IGF-1片段克隆 片段克隆反應按照TaKaRaTaqTM說明書進行。PCR反應程序如下:94℃預變性5min;Touchdown PCR:94℃30s,69℃30s,72℃30s,循環數為10,退火溫度下降到59℃;94℃30s,59℃30s,72℃30s,循環數為30個;72℃延伸10min。PCR產物用1.5%瓊脂糖凝膠電泳檢測;目的片段產物利用 TIANgel Midi Purification kit進行凝膠回收;連接pEASY-T1載體;轉化到Trans1-T1感受態細胞;固體培養基37℃過夜培養;挑菌;菌體PCR檢測;送交北京華大基因科技公司進行測序。
1.2.4 花鱸IGF-1cDNA 5′端和3′端的克隆 根據SMARTTM RACE cDNA Amplification Kit說明書,分別擴增IGF-1 5′端和3′端序列。5′端PCR反應程序如下:94 ℃ 預變性5min;94 ℃30s,63.5 ℃30s,72℃40s,循環數為40;72℃延伸10min。3′端克隆以IGF-13端A和IGF-1 3端B引物進行巢式PCR,第一個PCR反應以IGF-1 3端A為引物,PCR反應程序如下:94℃預變性5min;94℃30s,64.5℃30s,72℃40s,循環數為40;72℃延伸10min。第二個PCR反應以IGF-1 3端B為引物,PCR反應程序如下,94℃預變性5min;4℃30s,56℃30s,72℃40s,循環數為40;72℃延伸10min。膠回收及后續步驟同片段克隆。
1.2.5 序列分析 花鱸IGF-1cDNA全長在 NCBI上進行BLAST分析;利用DNAMAN推測開放閱讀框;利用Signal P 3.0server分析信號肽;利用Scratch程序預測二硫鍵,利用Clustal X軟件和MEGA 4軟件對21種動物IGF-1氨基酸序列進行多重比對并采用Neighbor-Joining法(1 000runs,Amino:p-distance)構建系統進化樹[18]。
1.2.6 IGF-1mRNA各組織的熒光實時定量PCR以肝臟組織RNA(濃度為500ng/μL)為模板按Prime-Script?RT reagent Kit with gDNA eraser(Perfect Real Time)的說明書進行反轉錄,cDNA按10倍稀釋5個梯度,按照 SYBR Green Premix Ex TaqTM (Tli RNaseH Plus)試劑盒配制反應液,在 Roche LightCycler480實時定量PCR儀上進行PCR反應。采用三步法,內參基因18s的反應程序為:預變性:94℃30s;94℃5s,58℃20s,72℃40s,循環數為40;溶解步驟。目的基因的反應程序為:預變性:94℃30s;94℃5s,58℃20s,72℃40s,循環數為40;溶解步驟。根據結果制作標準曲線,確定擴增效率合理。提取3尾成魚腦、垂體、心臟、鰓、胃、盲腸、腸、頭腎、腎臟、肝臟、性腺、脾臟和肌肉13個組織的mRNA,反轉錄得到的cDNA模板依照上述步驟進行實時定量PCR反應。
IGF-1基因cDNA全長包含873bp的堿基,其中5′端非編碼區190bp,3′端非編碼區128bp,編碼區555bp,編碼185個氨基酸(見圖1)。序列已經提交到NCBI數據庫,GenBank No.:JQ327805.1。其中信號肽區域包含44個氨基酸,B區30個,C區10個,A區21個,D區7個,E區74個。成熟肽存在CysB6、CysB18、CysA6、CysA7、CysA11和 CysA20六個半胱氨酸殘基。多序列比對結果顯示在編碼區內存在IGF-1與IGF-1受體和結合蛋白結合的保守的氨基酸序列(見圖2)。

圖1 花鱸IGF-1全長及氨基酸序列Fig.1 The cDNA and deduced amino acid sequence of Lateolabraxjaponicus IGF-1
在NCBI上對花鱸IGF-1推測的氨基酸進行多序列比對發現其與鱖魚IGF-1(Sinipercachuatsi)相似度最高為98%,與鞍帶石斑魚(Epinepheluslanceolatus)、加州鱸(Micropterussalmoides)、牙鲆(Paralichthysolivaceus)相似度為97%,與鯽魚(Carassiusauratus)和鯉魚(Cyprinuscarpio)相似度為69%,與人類的IGF-1(Homosapiens)相似度為60%,與金倉鼠(Mesocricetusauratus)相似度為50%,與原雞(Gallus gallus)相似度為53%。各個功能區域間比對發現,B和A區域保守性較高,C區域次之,而與D和E區域保守性最差(見圖2)。
對花鱸和其他21種脊椎動物IGF-1氨基酸序列進行系統進化樹(Neighbor-joining法)分析(見圖3)結果顯示,此進化樹分為三大分支,分別為魚類IGF-1分支、鳥類及中華鱉IGF-1分支和哺乳動物IGF-1分支,而花鱸IGF-1氨基酸屬于硬骨魚類IGF-1分支且與加州鱸(Micropterussalmoides)、鱖魚(Sinipercachuatsi)等魚類的IGF-1分類地位最為接近。


圖2 脊椎動物IGF-1氨基酸序列比對Fig.2 Multiple sequence alignment of vertebrate IGF-1amino acid sequences
利用熒光實時定量PCR檢測了梯度稀釋的肝臟樣本,由標準曲線(見圖4A、B)可知,花鱸IGF-1基因和內參基因18s擴增效率均符合要求,可進行定量試驗。
對花鱸不同組織IGF-1基因和18s進行實時定量實驗,分別進行3組重復,采用2-ΔΔCt法并以心臟作為對照因子計算不同組織IGF-1mRNA表達的相對定量結果(見圖5)。結果顯示,花鱸IGF-1mRNA在肝臟的轉錄水平最高;腸、盲腸、肌肉、脾臟表達次之;而在鰓、垂體、性腺、胃、腎臟、腦、頭腎、心臟表達量較低。
本研究首次克隆得到了花鱸IGF-1cDNA全長序列,參照人和其它脊椎動物的IGF-1結構,分析認為該基因可形成3對二硫鍵,對維持IGF-1的空間結構起重要作用[19]。多序列比對分析結果顯示B區(86.3%~97%)和 A 區(82%~100%)保守性較高,而C區(36%~100%),D區(29%~100%)和 E區(33%~100%)則在各物種之間有一定得差異。B區和A區在不同物種中的高度保守性歸結于他們各自包含與結合蛋白和受體結合的功能性序列[20-21]。
氨基酸序列比對分析發現花鱸IGF-1與鱖魚(Sinipercachuatsi)IGF-1相似度最高,為98%,與鞍帶石斑魚、加州鱸、牙鲆相似度為97%,與鯽魚,鯉魚相似度為69%,與人類的相似度為60%,與金倉鼠(Mesocricetusauratus)相似度為50%,與原雞相似度為53%,IGF-1在不同魚類間的高度保守性暗示著其在進化過程中始終保留著主要的功能結構,但是根據自身的身體條件以及生長環境的影響也發生了一定的變異。另外,與其他親緣關系較近的魚類相比,花鱸IGF-1氨基酸序列在D結構域有1個堿基缺失,具體原因有待進一步研究。根據Shamblott等[22]的研究結果按照E肽類型可以推斷花鱸IGF-1基因序列應屬于IGF-1 Ea-4亞型,與加州鱸、鱖魚、褐牙鲆等大部分海水魚相同。而鯽魚、團頭魴(Megalobramaamblycephala)、鯉魚、西伯利亞鱘(Acipenserbaerii)等淡水魚的IGF-1基因則屬于IGF-1Ea-2亞型。

圖3 脊椎動物IGF-1的NJ系統進化樹Fig.3 NJ phylogenetic tree of vertebrate IGF-1
根據花鱸與其他21種脊椎動物IGF-1氨基酸序列構建脊椎動物NJ系統進化樹可以看出,花鱸IGF-1與鱖魚,加州鱸,褐牙鲆等魚類的IGF-1分聚一支,說明花鱸IGF-1屬于魚類IGF-1大家族,而進化樹分析結果也體現了海水魚與淡水魚IGF-1在進化上的差別,哺乳動物、鳥類和兩棲類聚為另一支,物種間親緣關系與其傳統地位一致。

圖4 IGF-1和內參基因18s的標準曲線圖Fig.4 The standard curves of L.japonicus IGF-1and 18sgene

圖5 花鱸各組織IGF-1mRNA的相對表達量Fig.5 Relative expression levels of IGF-1mRNA in different tissues of L.japonicus
本研究利用熒光實時定量PCR檢測了花鱸成魚13個組織中IGF-1mRNA的相對表達水平,結果顯示其在肝臟表達量最豐富,是心臟的150多倍,這與其他魚類關于IGF-1mRNA轉錄水平的研究結果一致,如:金頭鯛[23],銀大麻哈魚[24-25],河鱸[26],鯉魚[27-28],日本鰻鱺[29],尼羅羅非魚[30],波紋短須石首魚[31],舌齒鱸[32-33],塞內加爾鰨[34],說明在花鱸體內肝臟對于IGF-1的合成與分泌起著重要的作用。在不同物種中肝臟IGF-1表達量的不同可能歸因于物種差異,還與其他的一些參數如生長因子、細胞因子、年齡、體重、營養條件、環境溫度和鹽度有關,同時也與個體的生長發育時期有很大的聯系[35-38]。IGF-1自分泌和旁分泌的作用方式對于相應的器官有著特異性功能[39-40]。研究結果顯示在花鱸成魚的腸和盲腸中的相對表達量是心臟的50多倍,由于魚類后腸具有滲透調節作用[41],這就暗示著IGF-1在花鱸滲透壓調節過程中可能會起到重要的作用。此外,在肌肉中檢測到了相對較高的表達量,這可能是由于IGF-1參與由 Ras-MEK-ERK信號通路調節的骨骼肌衛星細胞的增殖與分化,并且在魚類生長過程中IGF-1也參與到了由 PI3K-AktmTOR 信號通路的調控過程[42-43]。
[1]張美昭,高天翔.花鱸親魚人工培育與催產技術研究[J].青島海洋大學學報:自然科學版,2001,31(2):195-200.
[2]張春丹,李明云.花鱸繁殖生物學及繁育技術研究進展[J].寧波大學學報(理工版),2005,18(3):400-403.
[3]林意斌,薛阿民.花鱸養殖技術[J].河北漁業,2008(1):30.
[4]Duan C,Ding J,Schlueter P J,et al.A zebra view of the insulinlike growth factor signaling pathway [J].Aeta Zoolsiniea,2003,49:421-431.
[5]Duan C,Xu Q.Roles of insulin-like growth factor(IGF)binding proteins in regulating IGF actions[J].General and Comparative Endocrinology,2005,142(1-2):44-52.
[6]Humbel R E.Hormonal Proteins and Peptides[J].New York:CH Academic,1984,12:57-79.
[7]Lowe W L.Biological action of the insulin-like growth factors[J].In:LeRoith D,editor.Insulin-Like GrowthFactors:Molecular and Cellular Aspects.Boca Raton,FL:CRC Press,1991,1:49-85.
[8]Parrizas M,LeRoith D.Insulin-like growth factor-I inhibition of apoptosis is associated with increased expression of the bcl-xl gene product[J].Endocrinology,1997,138:355-365.
[9]Kajimura S,Uchida K,Yada T,et al.Stimulation of insulin-like growth factor-I production by recombinant bovine growth hormone in Mozambique tilapia,Oreochromismossambicus[J].Fish Physiology and Biochemistry,2001,25(3):221-230.
[10]Reinecke M,Collet C.The phylogeny of the insulin-like growth factors[J].International Review of Cytology,1998,183:1-94.
[11]Reinecke M,Zaccone G,Kapoor B G.Insulin-like growth factor I and II in fish[J].Fish Endocrinology,2006,1:87-130.
[12]Reinecke M,Bjornsson B T,Dickho V W W,et al.Growth hormone and insulin-like growth factors in fish:where we are and where to go[J].General and Comparative Endocrinology,2005,142(1/2):20-24.
[13]Ayaso E,Nolan C M,Byrnes L.Zebrafish insulin-like growth factor-I receptor:molecular cloning and developmental expression[J].Molecular and Cellular Endocrinology,2002,191:137-148.
[14]Maures T,Chan S J,Xu B,et al.Structural,biochemical,and expression analysis of two distinct insulin-like growth factor I receptors and their ligands in zebrafish [J].Endocrinology,2002,143:1858-1871.
[15]Nakao N,Tanaka M,Higashimoto Y,et al.Molecular cloning,dentification and characterization of four distinct receptor subtypes for insulin and IGF-I in Japanese flounder,Paralichthysolivaceus[J].Endocrinology,2002,173:365-375.
[16]Perrot V,Moiseeva E B,Gozes Y,et al.Ontogeny of the insulinlike growth factor system (IGF-I,IGF-II,and IGF-1R)in gilthead seabream(Sparusaurata):expression and cellular localization[J].General and Comparative Endocrinology,1999,116:445-460.
[17]陳彩芳,溫海深,何峰,等.程序化設計的簡并引物克隆半滑舌鰨CYP17基因[J].中國海洋大學學報:自然科學版,2009,39(6):1213-1218.
[18]Kumar R S,Tamura K,Nei M.MEGA3:Integrated software for molecular evolutionary genetics analysis and sequence alignment[J].Briefings in Bioinformatics,2004,5(2):150-163.
[19]Hober S,Forsberg G,Palm G,et al.Disulfide exchange olding of insulin-like growth factor-I [J].Biochemistry,1992,31:1749-1756.
[20]Zhang W,Gustafson T A,Rutter W J,et al.Positively charged side chains in the insulin-like growth factor-1Cand D-regions determine receptor binding specificity[J].Journal of Biology Chemistry,1994,269:10609-10613.
[21]Magee B A,Shooter G K,Wallace J C,et al.Insulin-like growth factor I and its binding proteins:a study of the binding interface using B-domain analogues[J].Biochemistry,1999,38:15863-15870.
[22]Shamblott M J,Chen T T.Age-related and tissue-specific levels of five forms of insulin-like growth factor mRNA in a teleost[J].Molecular Marine Biology and Biotechnology,1993,2(6):351-361.
[23]Duguay S J,Lai-Zhang J,Steiner D F,et al.Developmental and tissue-regulated expression of IGF-I and IGF-II mRNAs inSparus aurata[J].Molecular Endocrinology,1996,16:123-132.
[24]Duan C,Duguay S,Plisetskaya E.Insulin-like growth factor I(IGF-I) mRNA expression in coho salmon,Oncorhynchus kisutch:tissue distribution and effects of growth hormone/prolactin family proteins[J].Fish Physiology and Biochemistry,1993,11:371-379.
[25]Pierce A L,Dickey J T,Larsen D A,et al.A quantitative realtime RT-PCR assay for salmon IGF-I mRNA and its application in the study of GH regulation of IGF-I gene expression in primary culture of salmon hepatocytes[J].General and Comparative Endocrinology,2004,135:401-411.
[26]Jentoft S,Aastveit A H,Andersen O.Molecular cloning and expression of insulin-like growth factor-I(IGF-I)in Eurasian perch(Percafluviatilis):lack of responsiveness to growth hormone treatment[J].Fish Physiology and Biochemistry,2004,30:67-76.
[27]Tse M C,Vong Q P,Cheng C H,et al.PCR-cloning and gene expression studies in common carp(Cyprinuscarpio)insulin-like growth factor-II [J].Biochimica et Biophysica Acta,2002,(1575):63-74.
[28]Vong Q P,Chan K M,Cheng C H.Quantification of common carp (Cyprinuscarpio)IGF-I and IGF-II mRNA by real-time PCR:differential regulation of expression by GH [J].Endocrinology,2003,178:513-521.
[29] Moriyama S,Yamaguchi K,Takasawa T,et al.Insulin-like growth factorI of Japanese eel,Anguillajaponica:cDNA cloning,tissue distribution,and expression after treatment with growth hormone and seawater acclimation [J].Fish Physiology and Biochemistry,2006,32:189-201.
[30]Caelers A,Berishvili G,Meli M L,et al.Establishment of a realtime RT-PCR for the determination of absolute amounts of IGF-I and IGF-II gene expression in liver and extrahepatic sites of the tilapia[J].General and Comparative Endocrinology,2004,137:196-204.
[31]Patruno M,Maccatrozzo L,Funkenstein B,et al.Cloning and expression of insulin-like growth factors I and II in the shi drum(Umbrinacirrosa)[J].Comparative Biochemistry and Physiology part B:Biochemistry and Molecular Biology,2006,144:137-151.
[32]Terova G,Rimoldi S,Chini V,et al.Cloning and expression analysis of insulin-like growth factor I and II in liver and muscle of sea bass(Dicentrarchuslabrax,L.)during long-term fasting and refeeding[J].Fish Biology,2007,70:219-233.
[33]Patruno M,Sivieri S,Poltronieri C,et al.Real-time polymerase chain reaction,in situ hybridization and immunohistochemical localization of insulin-like growth factor-I and myostatin during development ofDicentrarchuslabrax(Pisces:Osteichthyes)[J].Cell Tissue Research,2008,331:643-658.
[34]Funes V,Asensio E,Ponce M,et al.Insulin-like growth factors I and II in the soleSoleasenegalensis:cDNA cloning and quantitation of gene expression in tissues and during larval development[J].General and Comparative Endocrinology,2006,149:166-172.
[35]Duan C.Nutritional and developmental regulation of insulin-like growth factors in fish[J].Nutrition,1998,128:306-314.
[36]Meton I,Caseras A,Canto E,et al.Liver insulin-like growth factor-I mRNA is not affected by diet composition or ration size but shows diurnal variations in regularly-fed gilthead sea bream(Sparusaurata)[J].Nutrition,2000,130:757-760.
[37]Larsen D A,Beckman B R,Dickhoff W W.The effect of low temperature and fasting during the winter on metabolic stores and endocrine physiology (insulin,insulin-like growth factor-I,and thyroxine)of coho salmon,Oncorhynchuskisutch[J].General and Comparative Endocrinology,2001,123:308-323.
[38]Gabillard J C,Weil C,Rescan P Y,et al.Effects of environmental temperature on IGF1,IGF2,and IGF type I receptor expression in rainbow trout(Oncorhynchusmykiss)[J].General and Comparative Endocrinology,2003,133:233-242.
[39]Reinecke M,Collet C.The phylogeny of the insulin-like growth factors[J].International review of cytology-a survey of cell,1998,183:1-94.
[40]Reinecke M,Zaccone G,Kapoor B G.Insulin-like growth factor I and II in fish[J].Fish Endocrinology,2006,1:87-130.
[41]Bern H A,McCormick S D,Kelley K M,et al.Insulin-like growth factors“under water”:role in growth and function of fish and other poikilothermic vertebrates[J].Modern concepts of insulin-like growth factors,1991,1:85-96.
[42]Rommel C,Bodine S C,Clarke B A,et al.Mediation of IGF-1-induced skeletal myotube hyper trophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3pathways[J].Nat Cell Biol,2001,3:1009-1013.
[43]Castillo J,Johnsen-Ammendrup I,Codina M,et al.IGF-I and insulin receptor signal transduction in trout muscle cells[J].Am J Physiol Regul Integr Comp Physiol,2006,290:1683-1690.