999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Runge-Kutta Multi-resolution Time-Domain Method for Modeling 3DDielectric Curved Objects

2014-04-24 10:53:52ZhuMin朱敏CaoQunsheng曹群生ZhaoLei趙磊WangYi王毅

Zhu Min(朱敏),Cao Qunsheng(曹群生)*,Zhao Lei(趙磊),Wang Yi(王毅)

1.College of Electronic and Information Engineering,Nanjing University of Aeronautics and

Astronautics,Nanjing,210016,P.R.China;2.Nanjing ASSEN Environment Technology Co.Ltd.,Nanjing,210000,P.R.China

1 Introduction

The finite-difference time-domain(FDTD)method has been widely used in the field of computational electromagnetics due to its simple implementation and a capability to address complex targets[1].It is known that the FDTD method has two primary drawbacks.One is that the numerical dispersion is the dominate limitation to the accuracy of the FDTD method.The other is that it is not able to accurately model curved surfaces and material discontinuities by using the stair-casing approach with structured grids.In the past decades,numerous efforts have been made to improve the traditional FDTD method such as the high-order methods.The multi-resolution timedomain(MRTD)method has been proposed to improve numerical dispersion properties[2-6].The Runge-Kutta multi-resolution time-domain(RKMRTD)has been proposed by Cao[7-8]to improve the dispersion and convergence in both time and spatial domains.However,these methods also have shortcomings to deal with curved objects.The conformal FDTD technique is one of candidates to circumvent this problem.Nowadays,more attentions are focused on how to modeling curved objects.Locally conformal FDTD(CFDTD)method was proposed by Dey,et al[9]to accurately model the curved metallic objects,and it is more accurate than the FDTD method.Stefan,et al[10]proposed a new conformal perfect electric conductor(PEC)algorithm,of the FDTD method,which only needed to change two fieldupdated coefficients.It could privilege either speed or accuracy when choosing a time step reduction.Some other papers investigated how to accurately model curved dielectric objects using the CFDTD method[11-13].

However,few papers discuss the conformal RK-MRTD(C-RKMRTD)method to deal with the curved dielectric objects.In this paper,the CRKMRTD method is derived and presented.Besides,numerical examples are also given to verify the proposed method[14].

2 C-RKMRTD Method

2.1 RK-MRTD method

For simplicity(σ=0)and without loss of generality,in three-dimensional(3D)one of the RK-MRTD[7]update equations can be written as

where mis the spatial stencil size.Parametersε,Δt,Δx,Δy,andΔzare the permittivity,temporal step size,and spatial step sizes along x-,yand z-directions,respectively.The coefficients a(v)is the same as defined in Ref.[7].

2.2 C-RKMRTD method

In order to derive the general update equations of the C-RKMRTD method with the spatial step sizeΔx=Δy=Δz,Eq.(1)can be rewritten in another form as

where coefficientsε(v)(v=1,2,…,2v-1)are the permittivities corresponding to the cell sizeΔx,3Δx,…,and(2v-1)Δx,respectively.It is clear that for a givenΔx,Eqs.(4,5)can thus be treated as the intervals 3Δxand(2v-1)Δxin the FDTD update equations.The multi-region decomposition of electric field Eis shown in Fig.1.

Fig.1 Efield multi-region decomposition for conformal high-order FDTD method

Adding Eqs.(2-5),the update equation of the C-RKMRTD method is expressed as

From Eq.(6),it is easy to see that the update equation of C-RKMRTD method is constituted by(2v-1)normal FDTD method with cell sizes ofΔx,3Δx,…,(2v-1)Δx.

Comparing Eqs.(1)and(6),it is clearly found that the effective dielectric constantεeffis

The weighting area[15]is used to obtainε(v)as

Three different conditions for the objects interface are shown in Fig.2.

3 Numerical Experiments

Fig.2 Different conditions for curved object interface

The numerical simulations are presented to validate the C-RKMRTD method.The two simu-lations both take 10cells per wavelength.The number of Courant,F(xiàn)riedrichs,Lewy(CFL)is 0.3,and an eight-layer of anistropic perfectly matched layer(APML)is used to truncate the computational domain.All computational simulations are based on a computer of Pentium with a dual-core 2.8GHz CPU and 1.87Gmemory.

3.1 Dielectric cylinder

The dielectric cylinder with a radius of 0.06m,height of 0.015m,the relative permittivityεrof 4,and relative permeabilityμrof 1.0.The cylinder is illuminated by an incident plane wave coming from the z-direction with a polarization in the x-direction at 10GHz.The total computational volume is discretized into 82×82×82 cells.The bistatic radar cross sections(RCSs)in E-plane obtained from different methods,i.e.,method of moments(MoM),MRTD and C-RKMRTD,are shown in Fig.3,whereθis the incident angle.The C-RKMRTD method agrees with the MoM method better than the MRTD method.Table 1lists the magnitudes of the spatial discretization,temporal discretization,total computational domain,total time steps and CPU time.Fig.4shows the difference between the C-RKMRTD/MRTD and the MoM method.

Fig.3 Bistatic RCS in E-plane of the dielectric cylinder obtained by different methods

Table 1 Comparison for different methods

Fig.4 Difference between C-RKMRTD(MRTD)and MoM method

3.2 Dielectric ellipsoid

The structure of dielectric ellipsoid with the radii of 0.6,0.6and 0.3min the x-,y-,z-directions,respectively.The relative permittivity εris 4,the relative permeabilityμris 1,the polarization of the electric field is in the x-direction,and the wavelength is 0.3m.

Backward scattering bistatic RCSs obtained by different methods are shown in Figs.5,6.It is found that the results of C-RKMRTD method is consistent with those of the MoM method and its performance is better than that of the non-conformal methods.The comparisons of the computational cost of different methods are displayed in Table 2.Fig.7shows the difference between C-RKMRTD/MRTD and the MoM methods.Fig.8 shows the difference between C-RKMRTD/FDTD and the MoM method.

Fig.5 Dielectric RCS in E-plane of the ellipsoid obtained by different methods

Fig.6 Bistatic RCS in H-plane of the dielectric ellipsoid using different methods

Table 2 Comparison for different methods

Fig.7 Difference between C-RKMRTD/MRTD and MoM method

Fig.8 Difference between FDTD/C-RKMRTD and the MoM method

4 Conclusion

An efficient approach that combines the conformal technique and RK-MRTD method is implemented to model the curved objects for the scattering problems.Numerical results demonstrate the higher accuracy and efficiency of the proposed method,compared with non-conformal methods including the MRTD and FDTD methods.

[1] Yee K S.Numerical solution of initial boundary value problems involving Maxwell′s equations in isotropic media[J].IEEE Trans Antennas Propagat,1966,AP-14:302-307.

[2] Krumpholz M,Katehi L P B.MRTD:New time-domain schemes based on multiresolution analysis[J].IEEE Trans Microw Theory Tech,1996,44:555-571.

[3] Tentzeris E M,Robertson R L,Harvey J F,et al.Stability and dispersion analysis of battle-Lemariebased MRTD schemes[J].IEEE Trans Microw Theory Tech,1999,47(7):1004-1013.

[4] Dogaru T,Carin L.Multiresolution time-domain using CDF biorthogonal wavelets[J].IEEE Trans Microw Theory Tech,2001,49(5):3902-3912.

[5] Fujii M,Hoefer W J R.Dispersion of time-domain wavelet Galerkin method based on Daubechies compactly supported scaling functions with three and four vanishing moments[J].IEEE Microwave and Guided Wave Letters,2002,10(7):1752-1760.

[6] Zhu X,Dogaru T,Carin L.Three-dimensional biorthogonal multiresolution time-domain method and its application to scattering problems[J].IEEE Trans Microw Theory Tech,2003,51(5):1085-1092.

[7] Cao Q,Kanapady R,Reitich F.High-order Runge-Kutta multiresolution time-domain methods for computational electromagnetics[J].IEEE Trans Microw Theory Tech,2006,54(8):3316-3326.

[8] Zhu Min,Cao Qunsheng.Studying and Analysis of the Characteristic of the High-Order and MRTD and RK-MRTD Scheme[J].Applied Computational Electromagnetics Society,2013,28(5):380-389.

[9] Dey S,Mittra R.A locally conformal finite-difference time-domain(FDTD)algorithm for modeling three-dimensional perfectly conducting objects[J].IEEE Microwave and Guided Wave Letters,1997,7(9):273-275.

[10]Stefan B,Nicolas C.A new 3-D conformal PEC FDTD scheme with user-defined geometric precision and derived stability criterion[J].IEEE Trans Antennas Propagat,2006,54(6):1843-1849.

[11]Yu Wenhua,Mittra R.A conformal finite difference time domain technique for modeing curved dielectric surfaces[J].IEEE Microwave Wireless Components Letter,2008,11(1):25-27.

[12]Wang J,Yin W Y.FDTD(2,4)-compatible conformal technique for treatment of dielectric surfaces[J].Electronic Letters,2009,45(3):146-147.

[13]Daubechies I.Ten lectures on wavelets[M].PA:SIAM,1992.

[14]Zhu M,Cao Q,Wang Y.Conformal multi-resolution time-domain method for scattering curved dielectric objects[J].Transactions of Nanjing University of Aeronautics and Astronautics,2014,31(3):269-273.

[15]Wang Jian,Yin Wenyan.Development of a novel FDTD(2,4)-compatible conformal scheme for electromagnetic computations of complex curved PEC objects[J].IEEE Trans Antennas Propagat,2013,61(1):299-309.

主站蜘蛛池模板: 免费播放毛片| 黄色网址免费在线| 亚洲无限乱码一二三四区| 手机在线看片不卡中文字幕| 亚洲成肉网| 成人国产免费| 99re经典视频在线| 国产美女精品在线| 亚洲高清在线天堂精品| 国产精品欧美在线观看| 亚洲中文字幕23页在线| 亚洲欧美人成人让影院| 久久香蕉国产线看观看亚洲片| 伊人久久婷婷| 日本成人在线不卡视频| 午夜啪啪福利| 久久人搡人人玩人妻精品| 欧美日韩精品一区二区视频| 在线观看av永久| 久久9966精品国产免费| 国产精品99久久久| 欧美成人区| 看看一级毛片| 国产成人精品综合| 中国精品自拍| 中文字幕1区2区| 国产玖玖玖精品视频| 精品人妻一区二区三区蜜桃AⅤ| 亚洲第一视频网| 国产日韩精品欧美一区喷| 欧美日韩导航| 精品無碼一區在線觀看 | 亚洲成AV人手机在线观看网站| 亚洲第一中文字幕| 亚洲综合婷婷激情| 国产一区在线视频观看| 亚洲精品手机在线| 在线观看国产网址你懂的| 91精品国产91久久久久久三级| 国产成人久视频免费| 久久中文无码精品| 日本免费一级视频| 亚洲 成人国产| 国产小视频a在线观看| 亚卅精品无码久久毛片乌克兰| 自拍偷拍欧美日韩| 亚洲v日韩v欧美在线观看| 在线播放真实国产乱子伦| 五月婷婷欧美| 日韩麻豆小视频| 国禁国产you女视频网站| 91成人精品视频| 精品视频第一页| 在线观看国产精品一区| 国产综合在线观看视频| 亚洲色大成网站www国产| 日本不卡在线视频| 久久青草免费91观看| 狠狠色噜噜狠狠狠狠奇米777| 国产二级毛片| 国产第一页免费浮力影院| 美女一级毛片无遮挡内谢| 日韩免费毛片| 久久视精品| 久草青青在线视频| 亚洲浓毛av| 久精品色妇丰满人妻| 亚洲黄色成人| 在线综合亚洲欧美网站| 小说区 亚洲 自拍 另类| 狠狠色狠狠综合久久| 又粗又硬又大又爽免费视频播放| 99热这里只有精品免费| 久久精品国产999大香线焦| 素人激情视频福利| 国产麻豆精品久久一二三| a级毛片一区二区免费视频| 亚洲人成人伊人成综合网无码| 免费看的一级毛片| 国产精品福利尤物youwu | 日韩二区三区无| 亚洲最大在线观看|