999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Quenching Tim e fora Sem ilinearHeatEquation w ith a Non linear Neum ann Boundary Cond ition

2014-05-13 02:38:07LIRuifeiZHULipingandZHANGZhengceSchoolofMathematicsandStatisticsXianJiaotongUniversityXian70049China
Journal of Partial Differential Equations 2014年3期

LIRuifei,ZHU Lip ingand ZHANG Zhengce,?School ofM athematics and Statistics,Xi’an Jiaotong University,Xi’an 70049, China.

2College ofScience,Xi’an University ofArchitecture&Technology,Xi’an 710055, China.

Quenching Tim e fora Sem ilinearHeatEquation w ith a Non linear Neum ann Boundary Cond ition

LIRuifei1,ZHU Lip ing2and ZHANG Zhengce1,?1School ofM athematics and Statistics,Xi’an Jiaotong University,Xi’an 710049, China.

2College ofScience,Xi’an University ofArchitecture&Technology,Xi’an 710055, China.

Received 19 January 2014;Accep ted 3M ay 2014

. Inthispaperweconsider thef initetimequenchingbehaviorofsolutionsto a sem ilinear heatequation w ith a nonlinear Neum ann boundary condition.Firstly,w e establish cond itions on nonlinear source and boundary to guarantee that the solution doesn’tquench for all tim e.Second ly,w e give su fficient conditions on data such that the solu tion quenches in finite tim e,and derive an upper bound of quenching tim e. Third ly,underm ore restrictive cond itions,w eobtain a low erbound ofquenching tim e. Finally,w e give the exactbounds of quenching tim e of a specialexam p le.

Nonl inearNeumannboundary;quenching;quenchingt ime.

1 In troduction

In this paper,w em ainly study the follow ing initial-boundary value p roblem

w hereνis the exterior norm al vector of the??assum ed sm ooth enough,?is a starshaped sm ooth ly bounded dom ain in(N≥2),and u0(x)is a positive bounded function satisfying the com patibility cond itions.We say a solution u of the p roblem(1.1) quenches in finite tim e,ifu>0 exists in the classical senseforall t∈[0,T),and satisfies

Ifquenching occurs,w e denote the quenching tim e by T,or else T=∞.

Quenching p roblem s have been stud ied by m any researchers(see[1–8]and the references therein),since the initialw ork of Kaw arada[9]appeared in 1975.Contrary to quenching,another singu larity is called blow up,w e refer to[10–15]and the references therein for the latest resu ltsof blow up p roblem s.

In[16],Fila and Levine stud ied the quenching phenom enon of the equation

Hu and Yin[17]stud ied theblow up p rofilenear theblow up tim e for theheatequation

Recently,Payne etal.[18–20]stud ied the blow up phenom ena and derived the upper and low er bounds of blow up tim e of Eq.(1.1)under certain assum p tions of f and g. As w e know,m any au thors considered the rate estim ates of the blow up or quenching solu tions,and even blow up tim e estim ate,bu t very few ones stud ied the exact estim ate ofquenching tim e.In thispaper,under the d ifferentassum p tionsof f and g,w e consider the quenching p roblem,and study the estim ate of quenching tim e.First,w e show the criteria for the solution u of(1.1)non-quenching and get the upper and low er boundsof quenching tim eof p roblem(1.1).M oreover,w egivean exam p le to show theapp licability ofour resu lts.In the paper,w e shalluse the follow ing Sobolev type inequality

2 Criteria for non-quenching

Throughout this paper,w e use k and c to denote various generic constants if there is no con fusion.

Theorem2.1.Assume that functions fand g satisfy thefollow ing conditions

w ith nonnegative constants k1,k2.M oreover,assume that p,q>1,and p-1>2q.Then the solution u of(1.1)w illnot quench forall time.

Proof.Defineφ(t)=R?u-2d x.Differentiating and using the assum p tions abou t f and g, w e obtain

w herew e use the equality?(u-n)=-nu-(n+1)?u.Since?is the star-shaped dom ain, and

In tegrating it,so w e have the follow ing inequality(see[19,Lemm a A.1])

So w e can rew riteφ(t)into

Using arithm etic-geom etricm ean inequality,w e have

w ithσ=(3+q)d1k2/(6ρ1).It follow s from(2.4)and(2.5)that

w ithα=(p-1-2q)/(p-q)and arbitraryε>0.Note thatα∈(0,1)in view of p-1>2q w ith p,q>1.By inserting(2.7)in(2.6),w e obtain

w here|?|is the N-volum e of?.So

so w e can rew rite(2.8)in to

Remark2.1.Clearly,w hen f,g are both nonnegative functions,quenching w ill never occu r,w hereas itw illdo if f,g are both negative.Herew e adm itand om it the details.

3 Criteria for quenching

Theorem3.1.Letu(x,t)be the classical solution oftheproblem(1.1),and assume thefollow ing conditions on the data

where0≤β≤α,f,g≤0,f′,g′≥0,f′,g′≤0,andΔu0≤0.M oreover,weassumeΨ(0)>0w ith

Proof.By them axim um p rincip le,w e know that ut≤0.Define

Using the hypotheses stated in this theorem,w e obtain

sinceΨ(t)>0,w hich will be p roved.M oreover,from the definition ofΨ(t),w e obtain

Togetherw ith(3.4),w e get

Clearly,thisinequalitycannotholdsforalltime.Infact,thisinequalityleadsto

NowweproveΨ′(t)≥R2aR?(ut)2dxR>0,infactfromtheinequality(3.6)and2-2a>0,we onlytoneedtoprove?(ut)2dx+??u·?utdx≥0. ApplyingGreen’stheorem,wederive

Letv,Δu,thenvsatisfiestheproblem

Remark 3.1.In this theorem,? needs not to bestar-shaped domain.

4 Lower bound for quenching time

In this section, we will seek the lower bound for the quenching time T if quenching occurs,andassumethat??is a bounded star-shaped domain and convex in two orthogonal directions.Before the proof,we defineχ(t)=R?u-2ndx.

Theorem4.1.Letu(x,t)betheclassicalsolutionoftheproblem(1.1)in?.Assumemoreover that

ifp<n-1,where c1,c2,c3are nonnegative constants.For p>n-1,the solution u w ill not quench forall time.

Proof.From the definition ofχ(t),w e obtain

w herew e use the equality?(u-n)=-n?u·u-(n+1).Since?is star-shaped dom ain,and

Integrating itand app lying the Divergence’s theorem,so

w here d,d1,ρ0,ρ1are defined in(2.3)(see[19,Lemm a A.1]).So w e can rew rite(4.3)in to

w hereμis a nonnegative constant,w hich w ill be determ ined.Nextw e use the Sobolev type inequality(see[20,Eq.(2.10)])

valid for bounded star-shaped dom ain?inassum ed to be convex in tw o orthogonal d irections and for arbitraryλ>0.Com bining above inequalities,w e obtain

Forμ>0 sm allenough,w e can chooseλ>0 such that c5=0.This leads to

w here c1,c2,c3,c4are defined in(4.10).

In the particu lar case p=n-1,the d ifferentialequality(4.11)reduces to

If p<n-1,since the follow ing inequality

This leads to the d ifferential inequality

If p>n-1,w e are in the situation of Theorem 2.1.So w e com p lete the p roof of low er bound ofquenching tim e.

Rem ark 4.1.Through a sim p le calcu lation,if f(u)satisfies(4.1)for k1>0,then ifquenching occu rs itw illbe ata tim e later than thatw hen f(u)=0.

Rem ark 4.2.W hen f,g and u0satisfy certain assum p tions,the solu tion u of the p roblem (1.1)m ay blow up(see[21,22]).In this paper,w e on ly consider the situationΔu0,f≤0, w hich can ensu re blow up w illnotoccu r before quenching.

5 An exam p le

In thissection,w ew illd iscuss the specialcase f(u)=0,g(u)=-u-q(q>1).M oreover,w e derive the exactupper and low er boundsofquenching tim e of solution u of the p roblem

(1.1).Before the p roof,w e assum e that?satisfies the hypothesisof Theorem 4.1.

Theorem 5.1.AssumeΔu0≤0,Ψ(0)>0.Let g(u)=-u-q(q>1),f=0,then thesolution u of problem(1.1)quenches in finite time T,and T satisfies

w ith nonnegative constants c1,c2,c3,whereΨ,Φandχare defined as in Theorems 3.1 and 4.1 respectively.

So H(t)≤H(0)-γt,w hichm eans that u quenching in finite tim e T.

Second ly,w e give the upper bound of quenching tim e.Since

valid for?α≥0,β≥(3-q)/(q-1),then w e can chooseαsuch that 0≤β≤α.If q≥3,w e haveβ≥0;if q<3,w e haveβ≥(3-q)/(q-1)>0.So w e have by Theorem 3.1 that

Now w e give the low er bound of quenching tim e.Since k1=0,app ly Theorem 4.1, w e have

w here c1,c2,c3are defined in(4.10).So

Thusw e com p lete the p roof.

Acknow ledgm en ts

The au thorsw ou ld like to thank the refereesverym uch for their valuable comm entsand suggestions.

This w ork w as supported in part by the National Natural Science Foundation of China(No.11371286),the Scientific Research Foundation for the Returned OverseasChinese Scholars,State Education M inistry,the You th Foundation of NSFC(No.11401458), the Special Fund of Education Departm ent(No.2013JK0586)and the Youth Natu ral Science Grant(No.2013JQ1015)of ShaanxiProvince of China.

[1]Chan C.Y.,New Resu lts in Quenching,In:Proc.1stWorld Congressof Nonlinear Analysis, Berlin:Walterde Gruyter,1996.

[2]Deng K.,Xu M.,Quenching for a non linear d iffusion equation w ith a singu lar boundary cond ition.Z.Angew.M ath.Phys.50(1999),574-584.

[3]Deng K.,Xu M.,On solutions of a singu lar d iffusion equation.Nonlinear Anal.TMA.41 (2000),489-500.

[4]Gidas B.,Sp ruck J.,A p riori bounds for positive solutions of nonlinear ellip tic equations. Comm.PartialD ifferential Equations8(1981),883-901.

[5]Levine H.A.,Advance in Quenching.In:Proc Internet Con f on Reaction-Diffusion Equa

tions and Their Equilibrium States,Boston:Birkh¨auser,1992.

[6]Levine H.A.,Lieberm an G.M.,Quenching of solu tions of parabolic equationsw ith non linear boundary cond itions in severald im ensions.J.Reine Angew M ath.345(1983),23-38.

[7]Zhao C.L.,Blow-up and Quenching for Solutionsof Som e Parabolic Equations,Ph.D.thesis, Univ.of Louisiana,Lafayette,2000.

[8]Zhang Z.C.,LiY.Y.,Quenching rate for the porousm ed ium equation w ith a singu larboundary cond ition.Appl.M ath.9(2011),1134-1139.

[9]Kaw arada H.,On solutionsof initialboundary value p roblem for ut=uxx+1/(1-u).RIMS Kyoto Univ.10(1975),729-736.

[10]Zhang Z.C.,Gradientblow up rate for a viscous Ham ilton-Jacobiequation w ith degenerate d iffusion.Arch.M ath.4(2013),361-367.

[11]Zhang Z.C.,Hu B.,Grad ient blow up rate for a sem ilinear parabolic equation.Discrete Contin.Dyn.Sys.A26(2010),767-779.

[12]Zhang Z.C.,Hu B.,Rate estim atesofgradientblow up for a heatequation w ith exponential nonlinearity.Nonlinear,Anal.TMA.12(2010),4594-4601.

[13]Zhang Z.C.,LiY.,Blow up and existenceofglobalsolu tions to non linear parabolic equations w ith degenerate d iffusion.Electron.J.Differential Equations264(2013),17pp.

[14]Zhang Z.C.,Li Y.Y.,Grad ient blow up solu tions of a sem ilinear parabolic equation w ith exponentialsource.Comm.PureAppl.Anal.12(2013),269-280.

[15]Zhang Z.C.,Wang B.,Blow up rate estim ate for degenerate parabolic equation w ith nonlinear grad ient term.Appl.M ath.M ech.6(2010),787-796.

[16]Fila M.,Levine H.A.,Quenching on the boundary.Nonlinear Anal.TMA.21(1993),795-802.

[17]Hu B.,Yin H.M.,The p rofile near blow up tim e for solu tions of the heat equation w ith a nonlinear boundary condition.Trans.Amer.M ath.Soc.346(1994),117-135.

[18]Payne L.E.,Philippin G.A.and Piro S.Vernier,Blow-up pheonom ena for a sem ilinear heat equation w ith nonlinear boundary cond ition.I,Z.Angew.M ath.Phys.61(2010),999-1007.

[19]Payne L.E.,Philipp in G.A.and Piro S.Vernier,Blow-up pheonom ena for a sem ilinear heat equation w ith non linear boundary cond ition.II,Nonlinear Anal.TMA.73(2010),971-978.

[20]Payne L.E.,Schaefer P.W.,Bounds for the blow up tim e for the heatequation under non linear boundary cond itions.Proc.Royal Soc.Edinburgh 139A(2009),1289-1296.

[21]Deng K.,Zhao C.L.,Quenching versus blow-up.J.Partial Differential Equations 13(2000), 243-252.

[22]Deng K.,Zhao C.L.,Blow-up versus quenching.Commun.Appl.Anal.7(2003),87-100.

10.4208/jpde.v27.n3.3 Sep tem ber 2014

?Correspond ing author.Email addresses:l i rui fei@stu.xj tu.edu.cn(R.Li),nyzhul iping@gmai l.com(L. Zhu),zhangzc@mai l.xj tu.edu.cn(Z.Zhang)

AMSSubjectClassifications:35A01,35B40,35K05,35K55

ChineseLibraryClassifications:O175.26


登錄APP查看全文

主站蜘蛛池模板: 波多野结衣亚洲一区| 经典三级久久| 精品久久久久久中文字幕女| 91精品视频在线播放| 国产丝袜无码精品| 国产成人综合久久| 亚洲成人免费在线| 欧洲熟妇精品视频| 国产美女免费| 精品国产自在现线看久久| 极品尤物av美乳在线观看| 精品国产一二三区| 77777亚洲午夜久久多人| 亚洲电影天堂在线国语对白| 亚洲综合色婷婷| 亚洲成人福利网站| 一级毛片在线播放免费| 88av在线看| 亚洲视屏在线观看| 日韩精品亚洲精品第一页| 亚洲综合久久一本伊一区| 毛片免费在线视频| 亚洲欧美日韩中文字幕一区二区三区| 国产凹凸视频在线观看| 日韩精品欧美国产在线| 成人福利一区二区视频在线| 日韩国产高清无码| 亚洲国产清纯| 国产成人高清亚洲一区久久| 亚洲高清在线播放| a级毛片免费看| 五月婷婷精品| 中文字幕欧美日韩| 国产精品九九视频| 91热爆在线| 亚洲 日韩 激情 无码 中出| 国产日韩欧美视频| 久热中文字幕在线| 国产成人精品一区二区秒拍1o| 综合色在线| 2019国产在线| 国产导航在线| 亚洲国产看片基地久久1024| 亚洲人精品亚洲人成在线| 中文字幕在线日韩91| 国产精品夜夜嗨视频免费视频| 精品国产免费观看一区| 在线色国产| 538精品在线观看| 欧美视频在线第一页| 欧美在线网| 午夜视频在线观看免费网站 | 91视频首页| 国产精品露脸视频| 国产成人综合网| 久久精品欧美一区二区| 亚洲成AV人手机在线观看网站| 999国产精品永久免费视频精品久久| 亚洲大尺码专区影院| 天天综合天天综合| 青青草91视频| 91麻豆精品国产91久久久久| 国产精品无码制服丝袜| 日韩国产 在线| www.亚洲天堂| 又猛又黄又爽无遮挡的视频网站| 亚洲清纯自偷自拍另类专区| 99久久精品视香蕉蕉| 91精品国产情侣高潮露脸| 992Tv视频国产精品| 91视频日本| 在线观看国产精品第一区免费| 国产成人综合欧美精品久久| 精品成人免费自拍视频| 亚洲一区精品视频在线| 欧美一区福利| 伊人色天堂| 九色最新网址| 国产日本一线在线观看免费| 欧美成人国产| 精品小视频在线观看| 国产激情无码一区二区APP|