程鵬,王新軍,張峰,蘇云龍,宋釗,謝金偉
(西安交通大學葉輪機械研究所,710049,西安)
核電汽輪機需在高壓缸出口布置汽水分離器,以去除高壓缸出口濕度約12%~14%蒸汽中的絕大部分水分。目前常用的是波形板汽水分離器,它的低速特性決定了其尺寸龐大、系統布置復雜、造價高以及系統可靠性低等[1]。ABB公司開發出安裝在高、中/低壓缸連通管內的高速汽水分離器——彎管式汽水分離器(SCRUPS),并取得了滿意的運行經驗和效果[2-5]。這種彎管式汽水分離器的除濕效率并不比常規汽水分離器低,且尺寸小,簡化了系統布置,降低了造價,提高了系統的可靠性。
圖1是彎管式汽水分離器在汽輪機系統中的布置。預分離器(MOPS)先分離出沿高壓缸壁流下的水分,彎管式汽水分離器(SCRUPS)去除濕蒸汽中的水分,蒸汽經再熱器(Reheater)加熱至一定過熱度后送往中/低壓缸繼續膨脹做功。圖2為彎管式分離器的簡化結構示意。分離器內裝有導流除濕葉柵,蒸汽在除濕葉柵內流動時流向發生偏轉,汽流攜帶的大部分水滴因慣性力作用發生碰撞并沉積在帶吸濕槽的除濕空心葉柵上,沉積的水分和少量蒸汽通過吸濕槽吸入葉柵內腔室并分別排出,從而達到除濕的目的。由于技術資料保密等原因,國內目前開發和應用這種分離器存在一定的難度。

圖1 彎管式汽水分離器在汽輪機系統中的布置

圖2 彎管式汽水分離器結構簡圖
本文應用計算流體動力學軟件ANSYS-CFX對彎管式汽水分離器和2種改進結構的除濕性能進行了數值計算與分析,揭示了“Z”字形彎管分離器具有最佳的除濕效率和最低的總壓損失。
水滴重力忽略不計[6],模型沿葉高方向對稱,取沿葉高一半進行研究能降低網格總數量,提高計算效率。
彎管式汽水分離器內水滴沉積率主要取決于導流除濕葉柵的葉寬、節距、汽流攻角[7],導流除濕葉柵的前期研究中得到了優化葉型和葉柵參數,即:葉寬為350mm,節距為60mm,沖角為10°。圖3為彎管式汽水分離器結構示意。商業軟件ANSYS ICEM可對分離器各部分單獨進行結構化網格劃分后再組合計算,根據網格無關性驗證,計算時取總網格數約1 239萬。

圖3 彎管式汽水分離器結構
不同直徑水滴,其沉積機理有所不同[7],大水滴沉積主要依靠慣性力,小水滴沉積受湍流效應影響很大。彎管式分離器內小水滴汽流跟隨性好,沉積量低,因此本文提出了彎管前加旋流裝置的組合結構(見圖4),來增加汽流湍流度,以提高小水滴沉積率,旋流葉柵結構尺寸參考文獻[8]。組合分離器中,旋流器為非結構化網格劃分,其余為結構化網格劃分,總網格數約1 450萬。

圖4 組合分離器結構
研究發現,各種直徑水滴的沉積量受汽流偏轉角影響很大,且隨偏轉角的增大而增大,為此本文提出了“Z”字形彎管分離器結構。圖5為“Z”字形彎管分離器在汽輪機系統中的布置。

圖5 “Z”字形彎管分離器在汽輪機系統中的布置
圖6為“Z”字形彎管分離器結構示意,其中導流葉柵偏轉角為120°,沖角為0°,由90°偏轉角葉型改型并用Numeca Desigh 3D葉型優化而得,為結構化網格,總網格數約1 698萬。

圖6 “Z”字形彎管分離器結構
采用商業軟件CFX求解定常三維黏性雷諾平均N-S方程,湍流模型為壁面函數修正的標準k-ε模型。采用IAPWS-IF97標準給定蒸汽的熱物理參數。
假定水滴碰撞到葉柵表面時未發生反彈,且被直接捕獲,所以采用Lagrangian方法追蹤水滴的運動軌跡,采用隨機軌道模型修正Lagrangian方法在描述水滴運動上的誤差,在運動方程的速度項中通過添加隨機速度分量來考慮湍流的影響。
根據Parker等人在平面葉柵上進行的小微粒沉積實驗數據[9],來驗證本文計算方法的適用性。采用25萬、50萬、100萬、150萬4種網格進行網格無關性驗證,計算邊界條件按照實驗條件給定。
總壓損失系數定義為

式中:P*0為進口總壓;P*2為當地總壓。由于文獻[9]中未給出總壓損失系數,所以引入外推法[10]來獲得CP的精確解,即

式中:f1、f2為2種網格密度時獲得的總壓損失系數的計算結果;p為方程截差階數;r為網格細化比。
沉積率為撞在實驗葉柵上的粒子質量與加入的粒子總質量之比。表1為平均總壓損失系數和沉積率。由表1可以看出,網格數為100萬時,平均總壓損失系數ˉCf的相對偏差ΔˉCf和沉積率η的相對偏差Δη明顯減小,網格數增加到150萬時,平均總壓損失系數的相對偏差僅減小了0.5%,沉積率的相對偏差僅減小了0.4%。因此,采用100萬~150萬網格比較合理,既可保證計算的準確性,也能適當減少計算量。

表1 平均總壓損失系數和沉積率
核電汽輪機高壓缸出口蒸汽所含水分中二次水滴不足5%[11],根據臨界韋伯數計算,高壓缸二次水滴的尺寸與一次水滴相差不大。為簡化計算,本文將少部分的二次水滴并入一次水滴。根據文獻[12]的試驗資料,汽輪機一次水滴群中直徑為di的水滴群質量mi與直徑等于平均直徑dm的水滴群質量mm之比近似服從正態分布,即

計算出水滴平均直徑后,可求出各種直徑水滴的質量及相應的水滴數。
根據1 750MW核電汽輪機的相關參數,按文獻[11]的方法確定水滴的平均直徑為10μm。本文將水滴分為5種直徑范圍來考核水滴的運動沉積特性,每種范圍取其平均值進行計算。水滴的質量流量為37 731.1g/s,每秒有1.657 42×1015個水滴進入計算區域,該數目過于龐大,按1∶1010比例縮小水滴數目,即取165 742個水滴進行計算。表2為水滴平均直徑為10μm時不同水滴直徑范圍內的水滴數目。

表2 水滴平均直徑為10μm時不同水滴直徑范圍的水滴數目
汽相進口給定總壓1 234.5kPa、總溫463.3K、汽流方向、湍流強度及長度;出口給定質量流量424.29kg/s;葉高方向上端面為對稱面,其余為壁面;水滴從進口均勻加入,速度為汽相進口速度的80%[7]。
圖7為彎管式汽水分離器(簡稱彎管式分離器)內汽相流線分布。由圖7可見,分離器內流速分布較為均勻且在50m/s左右,流線分布良好,汽流沿著圓管軸向流動。

圖7 彎管式分離器內汽相流線分布
圖8為彎管式分離器葉柵中間截面的總壓損失系數分布。由圖8可見,汽流總壓損失主要發生在兩組導流除濕葉柵中,對應總壓損失系數增大,在圓管和過渡段中汽流總壓損失系數基本不變。

圖8 彎管式分離器葉柵中間截面總壓損失系數分布
圖9為3種直徑水滴在彎管式分離器內的運動軌跡。由圖9可見,水滴在經過兩組除濕葉柵時數量有所減少,水滴沉積量隨著水滴直徑的增大而增多。

圖9 3種直徑水滴在彎管式分離器內的運動軌跡
圖10為組合分離器中汽相流線分布。由圖10可見:汽流經過旋流葉柵后流線發生偏轉,對應的汽流湍流度增強,紊亂的流場持續到第一組除濕葉柵進口;經過第一組除濕葉柵后,受葉柵整流的作用,流線基本均勻,經過第二組葉柵后流線與圓管軸向幾乎一致。

圖10 組合分離器中汽相流線分布
為了定量說明汽流在兩組除濕葉柵前的攻角分布,應用CFX探針功能提取計算結果中的汽流角度,并計算出沿額線分布的汽流攻角大小。圖11為應用探針對兩組葉柵進行數據提取的位置,圖12為組合分離器中汽流攻角分布,其中橫坐標相對長度l定義為探針位置距葉柵前額線端部的距離與前額線總長之比。由圖11、12可以見,兩組葉柵進口汽流攻角不再是設計時的10°,第一組葉柵進口汽流攻角的變化范圍較大,為-4°~42°,第二組葉柵進口汽流攻角的變化范圍較小,為2°~22°。
圖13為組合分離器葉柵中間截面的總壓損失系數分布。由圖13可見,汽流在經過旋流葉柵和兩組導流除濕葉柵時都會產生較大總壓損失,對應的總壓損失系數增大。

圖11 探針數據提取位置示意圖

圖12 組合分離器中葉柵進口汽流攻角分布

圖13 組合分離器葉柵中間截面總壓損失系數分布
圖14為3種直徑水滴在組合分離器中的運動軌跡。由圖14可見,與彎管式分離器相比,組合分離器中3種直徑水滴的沉積量均有所增多,尤其是直徑較小的水滴沉積量增加更明顯。

圖14 3種直徑水滴在組合分離器中的運動軌跡
圖15為“Z”字形彎管分離器中汽相流線分布。由圖15可見,總體上分離器中流速分布較為均勻,流線分布良好,汽流沿著圓管軸向流動。
圖16為“Z”字形彎管分離器葉柵中間截面總壓損失系數分布。由圖16可見,汽流在經過導流除濕葉柵時總壓降低明顯,對應總壓損失系數增大,在圓管和過渡段中汽流總壓損失系數基本不變。

圖15 “Z”字形彎管分離器中汽相流線分布

圖16 “Z”字形彎管分離器葉柵中間截面總壓損失系數分布
圖17為3種直徑水滴在“Z”字形彎管分離器中的運動軌跡。由圖17可見,與彎管式分離器相比,“Z”字形彎管分離器中不同直徑水滴的沉積量均有所增多,尤其是直徑較大水滴沉積量增加更明顯。

圖17 3種直徑水滴在“Z”字形彎管分離器中的運動軌跡
表3為3種分離器水滴沉積數量的統計結果。由表3可見:與彎管式分離器相比,2種改進結構中各種直徑水滴的沉積量均有所增多,組合分離器中直徑較小水滴的沉積量增加更明顯,“Z”字形彎管分離器中直徑較大水滴的沉積量增加明顯。根據每種直徑水滴沉積率及其對應沉積量占總水滴量的質量分數,經加權求和可求得分離器的除濕效率。圖18為3種分離器除濕效率和平均總壓損失系數對比。由圖18可見:彎管式分離器除濕效率和平均總壓損失系數分別為79.9%和0.32%,組合分離器分別為85.8%和0.41%,顯然在提高除濕效率的同時也增加了總壓損失;“Z”字形彎管分離器除濕效率和平均總壓損失系數分別為88.9%和0.20%,該分離器在提高除濕效率的同時也大大減小了總壓損失。

表3 水滴沉積量統計

圖18 3種分離器除濕效率和平均總壓損失系數對比
(1)彎管式分離器和“Z”字形彎管分離器中汽相流速比較均勻,汽流基本沿著圓管軸向流動;汽流經過組合分離器的旋流葉柵后流線發生偏轉,流場紊亂,流線經過第二組導流除濕葉柵后與圓管軸向基本一致。
(2)與彎管式分離器相比,組合分離器中直徑較小水滴的沉積量增加明顯,但同時也增加了總壓損失;“Z”字形彎管分離器中直徑較大水滴的沉積量增加明顯,同時大大減小了總壓損失。
(3)在除濕效率和平均總壓損失系數方面,彎管式分離器分別為79.9%和0.32%,組合分離器分別為85.8%和0.41%,“Z”字形彎管分離器分別為88.9%和0.20%。顯然,本文提出的“Z”字形彎管分離器具有較高的除濕效率和較低的總壓損失系數,值得推薦。
[1]李亮,王華,游瑋,等.核電汽輪機汽水分離再熱器的發展現狀 [C]∥中國動力工程學會透平專業委員會2011年學術研討會論文集.北京:中國動力工程學會,2011.
[2]VON BOECKH P,STIEFEL M,FRICK U.Experience with the moisture preseparator(MOPS)and with the special crossunder pipe separator(SCRUPS)in the Leibstadt nuclear plant[C]∥Proceedings of American Power Conference.Baden,USA:BBC Brown Boveri and Co.Ltd.,1986:860422.
[3]LEMEZIS S,BUSHEY J R,RABAS T J.Operating experience with new moisture pre-separators and special crossunder pipe separators [J].ABB Review,1990,3(1):3-10.
[4]DROSDZIOK A,FELDMUELLER A,HAM D,et al.Steam turbine and steam power plant with the steam turbine:Switzerland,WO1998016724A1[P].1998-04-23.
[5]JR SILVESTRI G J.Water collector for steam turbine exhaust system:USA,US4825653A [P].1989-05-02.
[6]朱東琦.波形板汽水分離器中流場的數值模擬 [D].哈爾濱:哈爾濱工程大學,2004.
[7]任水強.核電汽輪機彎管式汽水分離器的去濕特性數值分析 [D].西安:西安交通大學,1996.
[8]柯華,明廷臻,涂正凱.旋流葉片傳熱管內湍流強化傳熱數值模擬 [J].冶金能源,2009,28(2):38-41.KE Hua,MING Tingzhen,TU Zhengkai.Numerical simulation of turbulent heat transfer enhancement in the heat transfer tube with swirling blades[J].Energy for Metallurgical Industry,2009,28(2):38-41.
[9]PARKER G J,LEE P.Studies of the deposition of sub-micron particles on turbine blades [J].Proceedings of the Institution of Mechanical Engineers,1972,186(1):519-526.
[10]鄧建中,劉之行.計算方法 [M].2版.西安:西安交通大學出版社,2001.
[11]陳靜濤,孫祖基,張志新.濕蒸汽汽輪機高壓缸排汽中水滴平均直徑的計算 [J].汽輪機技術,1998,40(2):92-95.CHEN Jingtao,SUN Zuji,ZHANG Zhixin.The average diameter calculation of drops in wet steam turbine’s high-pressure cylinder exhaust gas[J].Turbine Tech-nology,1998,40(2):92-95.
[12]GYARMATHY G,BURKHARD H P,LESCH F,et al.Spontaneous condensation of steam at high pressure:first experimental results[C]∥Proc Inst Mech Engr Conf.London,UK:IME,1973:197-208.