999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

高速PCB板諧振仿真與分析

2014-07-19 18:37:56孟晶俞能杰
現(xiàn)代電子技術(shù) 2014年10期

孟晶 俞能杰

摘 要: 諧振是電源完整性一大問題,PCB電源平面間諧振振幅過大,會(huì)導(dǎo)致電源分配系統(tǒng)(PDS)工作異常,甚至成為EMI輻射源,故在PCB詳細(xì)設(shè)計(jì)階段需開展諧振仿真分析并消除諧振,從而提高設(shè)計(jì)成功率。為消除諧振,首先利用SIWAVE軟件對(duì)電源地平面間諧振情況進(jìn)行仿真分析,找出諧振點(diǎn),然后合理選用布局去耦電容,消除400 MHz以下頻段諧振影響。通過調(diào)整PCB疊層及層間距消除400 MHz以上頻段諧振影響。通過實(shí)例仿真分析,依據(jù)工程經(jīng)驗(yàn),實(shí)現(xiàn)了快速估算去耦電容的計(jì)算方法,并證明了其正確性。

關(guān)鍵詞: 電源完整性; 諧振; SIWAVE仿真分析; 去耦電容

中圖分類號(hào): TN710?34 文獻(xiàn)標(biāo)識(shí)碼: A 文章編號(hào): 1004?373X(2014)10?0144?03

Abstract: Resonance is a major problem of power integrity. If the resonance amplitude between PCB power planes is too large, it may cause PDS work abnormal, even cause the power planes to become EMI emitter, so in the detailed PCB design stage, simulation analysis of resonance and eliminating resonance are needed for improving the success rate of the design. To eliminate resonance, first, the SIWAVE is used to simulate and analyze the resonance between the power planes to find the resonance point, and then the decoupling capacitor is selected and layouted reasonably, so as to eliminate the influence caused by the resonance below 400 MHz frequency, and eliminate the influence caused by the resonance above 400 MHz frequency by adjusting the PCB overlayers and the space between overlayers. Based on engineering experience, a rapid calculation method to estimate the value of the decoupling capacitors was achieved. Its correctness was proved with simulation analysis on example.

Keywords: power integrity; resonance; SIWAVE simulating and analysis; decoupling capacitor

0 引 言

隨著微電子技術(shù)的不斷發(fā)展,更多功能的模擬和數(shù)字電路被制作或集成到單個(gè)芯片中[1]。當(dāng)大量高速開關(guān)器件同時(shí)快速切換狀態(tài)時(shí),就會(huì)產(chǎn)生電源噪聲,干擾周圍的高速信號(hào),并且由于噪聲容限變小,嚴(yán)重時(shí),可引發(fā)芯片的誤動(dòng)作,造成不利影響。因此對(duì)電源完整性的研究顯得越來越重要[2?3]。

作為電源完整性的一大問題,諧振是指能量被夾在兩個(gè)平行板(power and ground plane)之間,因原始信號(hào)與其反射信號(hào)同相(phase add)而形成共振腔效應(yīng)。在中低頻時(shí),電源地平面對(duì)可當(dāng)作一個(gè)理想電容來看待,其ESR和ESL都很小,在頻率達(dá)到某一個(gè)高頻段時(shí),電源地平面間變成了一個(gè)諧振腔,等效為RLC串并聯(lián)電路,在諧振頻率點(diǎn)附近,平面對(duì)地阻抗變得很大,從而引發(fā)電源完整性問題[4]。

1 諧振帶來的問題

若諧振落在了設(shè)計(jì)關(guān)注的頻段內(nèi),帶來的問題,需要從三方面來分析:一方面諧振過大,在諧振點(diǎn)處電源波動(dòng)過大,穩(wěn)壓電源芯片VRM無法實(shí)時(shí)響應(yīng)負(fù)載對(duì)于電流需求的快速變化,會(huì)出現(xiàn)電源跌落,從而產(chǎn)生電源噪聲[5];第二方面在諧振點(diǎn)處,電源表現(xiàn)的高阻抗,使的部分噪聲和信號(hào)能量無法在電源分配系統(tǒng)(PDS)中找到回流路徑,最終會(huì)從PCB板輻射出去,造成EMI問題[6];最后一個(gè)方面,若諧振點(diǎn)與板上器件工作頻率相同,將引起共振。無論哪種情況發(fā)生,都將導(dǎo)致板卡性能下降,甚至設(shè)計(jì)失敗,從而延長(zhǎng)設(shè)計(jì)周期和增加設(shè)計(jì)成本。因而,為了將問題控制在設(shè)計(jì)初期,需要在進(jìn)行PCB設(shè)計(jì)時(shí)開展諧振仿真分析,及時(shí)發(fā)現(xiàn)存在問題,通過計(jì)算,并利用仿真工具優(yōu)化設(shè)計(jì)。

2 消除諧振的方法

當(dāng)前,電源完整性諧振問題主要通過兩個(gè)途徑解決,即安裝去耦電容和優(yōu)化PCB的疊層設(shè)計(jì)及布局布線。在高速系統(tǒng)工作速率低于400 MHz時(shí),在恰當(dāng)位置安裝合適的去耦電容,有助于減小電源完整性問題;當(dāng)系統(tǒng)速率更高時(shí),去耦電容作用減小。這時(shí),只有通過優(yōu)化PCB層間距設(shè)計(jì)及布局布線,降低電源電壓,以及適當(dāng)匹配,降低反射等辦法解決電源完整性問題[7]。之所以是400 MHz,是由于受限于去耦電容能力,眾所周知,理想電容實(shí)際上是不存在的(在極低頻情況下,才將電容看作理想電容),實(shí)際電容總會(huì)存在一些寄生參數(shù),在高頻情況下,其ESL、ESR參數(shù)將極其重要。一個(gè)電容器可用一個(gè)等效串聯(lián)電路來表示[8],如圖 1所示。

4 結(jié) 語

諧振問題是電源完整性的一大問題,在高速PCB設(shè)計(jì)中需在設(shè)計(jì)初期對(duì)其進(jìn)行控制。不同頻段的諧振有不同的處理方法。針對(duì)400 MHz以下頻段,通過合理選用布局去耦電容,達(dá)到消除諧振的目的;而針對(duì)400 MHz以上頻段,通過調(diào)整PCB疊層及層間距可達(dá)到同樣目的。本文依據(jù)工程經(jīng)驗(yàn),實(shí)現(xiàn)了快速估算去耦電容的計(jì)算方法,并通過實(shí)例仿真分析,證明了其正確性。

參考文獻(xiàn)

[1] SRIDHARAN V, SWAMINATHAN M, BANDYOPADHYAY T. Enhancing signal and power integrity using double sided silicon interposer [J]. IEEE Microwave and Wireless Components Letters, 2011, 21(11): 598?600.

[2] 閆靜純,李濤,蘇浩航.高速高密度PCB電源完整性分析[J].電子器件,2012(3):296?299.

[3] 周子琛,申振寧.高速嵌入式系統(tǒng)中的電源完整性設(shè)計(jì)方法[J].單片機(jī)與嵌入式系統(tǒng)應(yīng)用,2010(3):19?21.

[4] 申偉,唐萬明,王楊.高速PCB電源完整性分析[J].現(xiàn)代電子技術(shù),2009,32(12):213?218.

[5] SWAMINATHAN M, KIM J, NOVAK I, et a1. Power distribution networks for system on package:status and challenges [J]. IEEE Transactions on Advanced Packaging, 2004, 27(2): 286?300.

[6] 吳聽,錢照明,龐敏熙.開關(guān)電源印刷電路板電磁兼容問題的研究[J].電子與信息學(xué)報(bào),2001,23(2):181?186.

[7] 白同云.高速PCB電源完整性研究[J].中國(guó)電子科學(xué)研究院學(xué)報(bào),2006(1):22?31.

[8] 包興,胡明.電子器件導(dǎo)論[M].北京:北京理工大學(xué)出版社,2001.

[9] 李學(xué)平,李玉山.基于Ansofl仿真分析的SSN解決方案探討[J].微型機(jī)與應(yīng)用,2011,30(4):68?70.

[10] WU Tzong?Lin, CHUANG Hao?Hsiang, WANG Ting?Kuang. Overview of power integrity solutions on package and PCB: decoupling and EBG isolation [J]. IEEE Transactions on Electromagnetic Compatibility, 2010, 52(2): 346?356.

參考文獻(xiàn)

[1] SRIDHARAN V, SWAMINATHAN M, BANDYOPADHYAY T. Enhancing signal and power integrity using double sided silicon interposer [J]. IEEE Microwave and Wireless Components Letters, 2011, 21(11): 598?600.

[2] 閆靜純,李濤,蘇浩航.高速高密度PCB電源完整性分析[J].電子器件,2012(3):296?299.

[3] 周子琛,申振寧.高速嵌入式系統(tǒng)中的電源完整性設(shè)計(jì)方法[J].單片機(jī)與嵌入式系統(tǒng)應(yīng)用,2010(3):19?21.

[4] 申偉,唐萬明,王楊.高速PCB電源完整性分析[J].現(xiàn)代電子技術(shù),2009,32(12):213?218.

[5] SWAMINATHAN M, KIM J, NOVAK I, et a1. Power distribution networks for system on package:status and challenges [J]. IEEE Transactions on Advanced Packaging, 2004, 27(2): 286?300.

[6] 吳聽,錢照明,龐敏熙.開關(guān)電源印刷電路板電磁兼容問題的研究[J].電子與信息學(xué)報(bào),2001,23(2):181?186.

[7] 白同云.高速PCB電源完整性研究[J].中國(guó)電子科學(xué)研究院學(xué)報(bào),2006(1):22?31.

[8] 包興,胡明.電子器件導(dǎo)論[M].北京:北京理工大學(xué)出版社,2001.

[9] 李學(xué)平,李玉山.基于Ansofl仿真分析的SSN解決方案探討[J].微型機(jī)與應(yīng)用,2011,30(4):68?70.

[10] WU Tzong?Lin, CHUANG Hao?Hsiang, WANG Ting?Kuang. Overview of power integrity solutions on package and PCB: decoupling and EBG isolation [J]. IEEE Transactions on Electromagnetic Compatibility, 2010, 52(2): 346?356.

參考文獻(xiàn)

[1] SRIDHARAN V, SWAMINATHAN M, BANDYOPADHYAY T. Enhancing signal and power integrity using double sided silicon interposer [J]. IEEE Microwave and Wireless Components Letters, 2011, 21(11): 598?600.

[2] 閆靜純,李濤,蘇浩航.高速高密度PCB電源完整性分析[J].電子器件,2012(3):296?299.

[3] 周子琛,申振寧.高速嵌入式系統(tǒng)中的電源完整性設(shè)計(jì)方法[J].單片機(jī)與嵌入式系統(tǒng)應(yīng)用,2010(3):19?21.

[4] 申偉,唐萬明,王楊.高速PCB電源完整性分析[J].現(xiàn)代電子技術(shù),2009,32(12):213?218.

[5] SWAMINATHAN M, KIM J, NOVAK I, et a1. Power distribution networks for system on package:status and challenges [J]. IEEE Transactions on Advanced Packaging, 2004, 27(2): 286?300.

[6] 吳聽,錢照明,龐敏熙.開關(guān)電源印刷電路板電磁兼容問題的研究[J].電子與信息學(xué)報(bào),2001,23(2):181?186.

[7] 白同云.高速PCB電源完整性研究[J].中國(guó)電子科學(xué)研究院學(xué)報(bào),2006(1):22?31.

[8] 包興,胡明.電子器件導(dǎo)論[M].北京:北京理工大學(xué)出版社,2001.

[9] 李學(xué)平,李玉山.基于Ansofl仿真分析的SSN解決方案探討[J].微型機(jī)與應(yīng)用,2011,30(4):68?70.

[10] WU Tzong?Lin, CHUANG Hao?Hsiang, WANG Ting?Kuang. Overview of power integrity solutions on package and PCB: decoupling and EBG isolation [J]. IEEE Transactions on Electromagnetic Compatibility, 2010, 52(2): 346?356.

主站蜘蛛池模板: 国产一区在线观看无码| 国产人免费人成免费视频| 精品一区二区无码av| 中国美女**毛片录像在线| 亚洲成人精品在线| 久久99国产综合精品1| 欧美精品影院| 国产微拍精品| 丝袜国产一区| 国产导航在线| 免费欧美一级| 欧美精品亚洲二区| 欧美一区二区人人喊爽| 一本久道久久综合多人 | 免费人成网站在线高清| 亚洲Aⅴ无码专区在线观看q| 国产女同自拍视频| 亚洲区视频在线观看| 99久久精品久久久久久婷婷| 欧美日韩国产在线播放| 色婷婷综合在线| 午夜福利视频一区| 国产屁屁影院| 老司机aⅴ在线精品导航| 九九热精品免费视频| 理论片一区| аⅴ资源中文在线天堂| 亚洲天堂久久| 亚洲最新地址| 日韩二区三区| 久久91精品牛牛| 国产精品福利尤物youwu | 免费福利视频网站| 亚洲91精品视频| 99久久精品免费视频| 国产一二三区在线| 97久久精品人人做人人爽| 高清国产在线| 久久综合结合久久狠狠狠97色| 亚洲精品午夜无码电影网| 国产97视频在线观看| 欧洲欧美人成免费全部视频| 在线国产欧美| 亚洲热线99精品视频| 高清国产va日韩亚洲免费午夜电影| 色偷偷男人的天堂亚洲av| 亚洲伊人电影| 亚洲人成电影在线播放| 91日本在线观看亚洲精品| 亚洲一级毛片免费观看| 欧美特黄一级大黄录像| 国产美女人喷水在线观看| 男女猛烈无遮挡午夜视频| 狠狠亚洲五月天| 国内熟女少妇一线天| 免费视频在线2021入口| 欧美不卡在线视频| 色婷婷在线播放| 人人91人人澡人人妻人人爽 | 99re在线免费视频| 亚洲欧洲日韩综合色天使| 亚洲综合香蕉| 成人欧美在线观看| 欧美成人免费一区在线播放| 国产精品爽爽va在线无码观看 | 国产特级毛片| 欧美人与性动交a欧美精品| 久久成人免费| 国产99免费视频| 精品国产福利在线| 成人一级免费视频| 欧美日韩成人| 欧美一区二区自偷自拍视频| 日韩免费无码人妻系列| 在线无码私拍| 欧美一区二区自偷自拍视频| 人人艹人人爽| 亚洲国产中文精品va在线播放| 亚洲欧洲美色一区二区三区| 性网站在线观看| 91在线激情在线观看| 国产黄色片在线看|