張偉娜,殷永泉,冉德欽,崔兆杰
(山東大學(xué) 環(huán)境科學(xué)與工程學(xué)院,山東 濟(jì)南 250100)
土壤是重要的環(huán)境要素之一,是一切生物賴以生存的基礎(chǔ).近年來(lái),隨著石油勘探開發(fā)以及石油加工等一系列過(guò)程的迅速發(fā)展,石油污染土壤問(wèn)題日益凸顯[1-3].石油類污染物進(jìn)入土壤后,不僅會(huì)破壞土壤結(jié)構(gòu),降低土壤質(zhì)量,還會(huì)通過(guò)遷移轉(zhuǎn)化、地表逕流以及食物鏈等途徑對(duì)大氣、水環(huán)境、食品安全和人身健康構(gòu)成嚴(yán)重威脅.石油污染已經(jīng)引起世界各國(guó)的普遍關(guān)注,成為環(huán)境領(lǐng)域重要的社會(huì)和環(huán)境問(wèn)題.因此,對(duì)石油污染土壤進(jìn)行修復(fù)迫在眉睫[4].在眾多石油污染土壤的修復(fù)方法中,淋洗修復(fù)是少數(shù)幾個(gè)可以徹底去除污染物的方法之一,也是研究較多的方法[5-8].
表面活性劑十二烷基硫酸鈉(SDS)是一種常用的陰離子表面活性劑,其與非離子表面活性劑復(fù)配淋洗研究較多,Urum[9]等研究了SDS淋洗修復(fù)的卷縮機(jī)理,冉德欽[5]等研究了SDS和吐溫-80(TW-80)復(fù)配淋洗修復(fù)石油污染土壤.有關(guān)烷基酚聚氧乙烯醚(OP-10)淋洗研究較少.OP-10具有很好的乳化、潤(rùn)濕、勻染和擴(kuò)散等性能,耐酸、堿、硬水,可與各類表面活性劑復(fù)配使用.本文分別在振蕩和超聲2種條件下采用SDS與OP-10復(fù)配淋洗修復(fù)石油污染的土壤,探討了各實(shí)驗(yàn)條件對(duì)土壤中石油去除率的影響,為表面活性劑淋洗修復(fù)石油污染土壤提供一定的技術(shù)支持.
本實(shí)驗(yàn)所用土壤取自孤島油區(qū),將土壤混合均勻,室溫條件下自然風(fēng)干,除去殘根、石塊等雜物,研磨,過(guò)0.180mm 篩,然后將土樣儲(chǔ)于棕色的廣口瓶?jī)?nèi)備用.供試土壤的理化參數(shù)見表1.

表1 所用土壤的理化參數(shù)Tab.1 Physical and chemical parameters of soil
稱土樣2.5g于100mL具塞錐形瓶中,加入SDS和OP-10復(fù)配質(zhì)量比為50:1的表面活性劑淋洗液,置于恒溫振蕩器或超聲清洗器上淋洗一定時(shí)間.靜置后,棄去上清液,將土壤在105 ℃時(shí)干燥1h.冷卻后,用二氯甲烷超聲萃取,用紫外分光光度法測(cè)石油含量,測(cè)定波長(zhǎng)為254mm,計(jì)算石油去除率.
在表面活性劑修復(fù)淋洗石油污染土壤過(guò)程中,表面活性劑的質(zhì)量濃度影響石油去除率,實(shí)驗(yàn)結(jié)果見圖1.SDS和OP-10復(fù)配淋洗時(shí),超聲淋洗比振蕩淋洗去除率高.超聲淋洗時(shí)產(chǎn)生的輻射壓和聲微流對(duì)錐形瓶中各物質(zhì)起到攪拌作用,引起土壤顆粒之間的摩擦,導(dǎo)致表面活性劑吸附量較少[10-11].當(dāng)表面活性劑質(zhì)量濃度較低時(shí),石油去除率隨質(zhì)量濃度的增加成線性增長(zhǎng),當(dāng)質(zhì)量濃度達(dá)到5g/L 時(shí),土壤中易解吸的石油組分已被去除,去除率趨于穩(wěn)定,不再隨質(zhì)量濃度增加而增加.當(dāng)表面活性劑質(zhì)量濃度過(guò)高時(shí),不僅會(huì)造成藥劑浪費(fèi)和土壤二次污染,還會(huì)導(dǎo)致絮凝物質(zhì)的產(chǎn)生,與土壤結(jié)合形成乳狀物[12-13].這些乳狀物既會(huì)降低表面活性劑的可利用性,又會(huì)阻塞土壤空隙,降低污染物和表面活性劑的流動(dòng)性,影響淋洗效果.本實(shí)驗(yàn)從經(jīng)濟(jì)和環(huán)保的角度考慮,選用表面活性劑的質(zhì)量濃度是5g/L.
pH 是表面活性劑淋洗石油的一個(gè)重要參數(shù),對(duì)石油淋洗效果的影響結(jié)果見圖2.SDS和OP-10復(fù)合淋洗時(shí),超聲淋洗比振蕩淋洗去除率高.石油的去除率隨pH 值的升高而升高.當(dāng)pH 值較低時(shí),陰離子表面活性劑會(huì)吸附到土壤表面[14],降低了表面活性劑的利用率.隨著pH 值的增加,土壤顆粒表面的負(fù)電荷增加,表面活性劑分子與土壤顆粒之間的吸附作用降低,排斥作用增加,且固液相之間的界面張力降低[15],利于提高石油去除率.

圖1 表面活性劑濃度對(duì)石油去除率的影響Fig.1 Crude oil removal as function of concentration of surfactant solution

圖2 pH 對(duì)石油去除率的影響Fig.2 Crude oil removal as function of pH
液固比是表面活性劑淋洗液體積與待修復(fù)土壤的質(zhì)量比例,液固比對(duì)石油淋洗效果的影響見圖3.SDS和OP-10復(fù)合淋洗時(shí),超聲淋洗比振蕩淋洗去除率高.當(dāng)液固比小于10mL/g時(shí),隨液固比增加去除率增加較快,液固比為10~20mL/g時(shí),去除率增加相對(duì)較慢,當(dāng)液固比大于20mL/g時(shí),去除率趨于平穩(wěn).當(dāng)液固比過(guò)小時(shí),易發(fā)生乳化作用,減弱石油的流動(dòng)性,不利于攪拌[16].隨著液固比的增加,表面活性劑膠體粒子量隨之增加,膠體與土壤的接觸機(jī)會(huì)增加,石油去除率升高[17].液固比過(guò)大會(huì)造成藥劑和能量浪費(fèi)[1].為了保證去除效果并節(jié)約淋洗液用量,實(shí)驗(yàn)選取的液固比為20mL/g.
溫度對(duì)表面活性劑的活性、吸附性和溶解度有很大影響,淋洗溫度對(duì)石油去除率的影響見圖4.SDS和OP-10復(fù)配淋洗時(shí),超聲淋洗比振蕩淋洗去除率高.石油去除率隨溫度升高而升高.溫度小于20 ℃或大于30 ℃時(shí),去除率幅度變化較大,當(dāng)溫度在20~30 ℃之間時(shí),去除率幅度變化較小.溫度較低時(shí),石油污染物吸附在土壤表面,淋洗效果較差.而隨著溫度的升高,石油的吸附性降低,表面活性劑的CMC 降低,使得膠體數(shù)量增加,增溶效果提高,去除率升高[15,18].當(dāng)溫度過(guò)高時(shí),不僅會(huì)造成能耗增加,還會(huì)使OP-10的表面活性和溶解度降低,此外高溫會(huì)使水分蒸發(fā),影響淋洗效果.

圖3 液固比對(duì)石油去除率的影響Fig.3 Crude oil removal as function of the ratio of liquid to solid

圖4 淋洗溫度對(duì)石油去除率的影響Fig.4 Crude oil removal as function of washing temperature
淋洗時(shí)間也是一個(gè)重要的淋洗條件,其對(duì)石油去除率的影響見圖5.SDS和OP-10復(fù)合淋洗時(shí),超聲淋洗比振蕩淋洗去除率高,超聲淋洗可以大幅度縮短淋洗時(shí)間.石油的去除率隨淋洗時(shí)間的延長(zhǎng)而升高.振蕩淋洗時(shí),時(shí)間小于2h,去除率隨時(shí)間變化相對(duì)較快,超過(guò)2h時(shí),去除率基本趨于平穩(wěn);超聲淋洗時(shí),時(shí)間小于30min,去除率隨時(shí)間變化相對(duì)較快,超過(guò)30min時(shí),去除率基本趨于平穩(wěn).當(dāng)淋洗時(shí)間不足時(shí),淋洗不完全,去除率較低.在一定時(shí)間范圍內(nèi),隨著淋洗時(shí)間延長(zhǎng),表面活性劑和污染物的接觸角增加,使得固相中的污染物向液相中移動(dòng),從而提高淋洗效率[17],當(dāng)移動(dòng)達(dá)到平衡時(shí)淋洗率不再提高.
在表面活性劑溶液中加入某些無(wú)機(jī)鹽離子作為助劑,對(duì)土壤的淋洗修復(fù)效率也有影響,見圖6.CaCl2,KCl和NH4Cl對(duì)SDS和OP-10的復(fù)配淋洗有消極影響,可稱這3種鹽為消極助劑.CaCl2對(duì)去除率的消極影響最大,NH4Cl的消極影響最小.隨著CaCl2和KCl添加量的增加,去除率變化不大.而隨著NH4Cl添加量的增加,去除率變化較大.Na2CO3,和Na2SiO3對(duì)淋洗有積極影響,稱這2種鹽為積極助劑.NaCl對(duì)去除率影響較小,可視為對(duì)淋洗沒有影響.

圖5 淋洗時(shí)間對(duì)石油去除率的影響Fig.5 Crude oil removal as function of washing time

圖6 無(wú)機(jī)鹽對(duì)石油去除率的影響Fig.6 Crude oil removal as function of salt
鈣離子既可增加水的硬度,又能和SDS電離出的陰離子反應(yīng)降低淋洗去除率[5],所以CaCl2對(duì)去除率的消極影響較大.鈉離子和鉀離子既能增加離子膠束的擴(kuò)散雙電層,提高表面活性劑活性[5],對(duì)淋洗產(chǎn)生積極影響;又能從土壤中交換出鈣離子,減少SDS的有效作用物質(zhì)的量,破壞復(fù)配體系,對(duì)淋洗產(chǎn)生消極影響.鈉離子的這2種能力相當(dāng),所以對(duì)淋洗影響不大,而鉀離子對(duì)淋洗產(chǎn)生的消極影響大于積極影響,導(dǎo)致KCl對(duì)淋洗產(chǎn)生消極影響.NH4Cl為強(qiáng)酸弱堿鹽,水解使溶液酸性增強(qiáng),導(dǎo)致去除率相對(duì)較低.Na2CO3和Na2SiO3為強(qiáng)堿弱酸鹽,水解使表面活性劑溶液堿性增強(qiáng),且其電離產(chǎn)生的陰離子可與溶液中存在的鈣離子產(chǎn)生沉淀,有利于提高石油去除率.Na2SiO3及其水解產(chǎn)物還能吸附到土壤顆粒表面,形成一層保護(hù)膜,防止解吸出的石油再次被土壤吸附[19].
SDS/OP-10復(fù)配淋洗在超聲條件下淋洗去除率比振蕩時(shí)去除率高.淋洗效果與表面活性劑溶液濃度、pH、液固比、溫度和淋洗時(shí)間成正相關(guān),淋洗的最佳條件是:SDS和OP-10復(fù)配溶液(復(fù)配質(zhì)量比為50:1)質(zhì)量濃度為5g/L,pH 為7,液固比為20mL/g.溫度為25℃,超聲淋洗30min,或者振蕩淋洗2h,無(wú)機(jī)鹽離子對(duì)去除率也有影響.CaCl2,KCl和NH4Cl對(duì)SDS/OP-10 溶液的復(fù)配淋洗有消極影響,Na2CO3和Na2SiO3對(duì)淋洗有積極影響,而NaCl對(duì)淋洗影響不大.
[1] MEGHARAJ M,RAMAKRISHNAN B,VENKATESWARLU K,et al.Bioremediation approaches for organic pollutants:A critical perspective[J].Environ Int,2011,37(8):1362-1375.
[2] ZHAO Dongfeng,LIU Chunshuang,LIU Lihong,et al.Selection of functional consortium for crude oil-contaminated soil remediation[J].Int Biodeterior Biodegrad,2011,65(8):1244-1248.
[3] WANG Hao,CHEN Jiajun.Enhanced flushing of polychlorinated biphenyls contaminated sands using surfactant foam:Effect of partition coefficient and sweep efficiency[J].Journal of Environmental Sciences,2012,24(7):1270-1277.
[4] LóPEZ-VIZCAíNO R,SáEZ C,CANIZARES P,et al.The use of a combined process of surfactant-aided soil washing and coagulation for PAH-contaminated soils treatment[J].Sep Purif Technol,2012,88(22):46-51.
[5] 冉德欽.異位淋洗法修復(fù)石油污染土壤[D].山東大學(xué),2012.RAN Deqin.Remediation of petroleum-contaminated soil by ex-situ washing[D].Shandong University,2012.
[6] ZHANG Ming Zhang,ZHU Lizhong.Effect of SDBS-Tween 80mixed surfactants on the distribution of polycyclic aromatic hydrocarbons in soil-water system[J].J Soils and Sediments,2010,10(6):1123-1130.
[7] MOLDES A,PARADELO R,RUBINOS D,et al.Ex Situ treatment of hydrocarbon-contaminated soil using biosurfactants from lactobacillus pentosus[J].J Agric Food Chem,2011,59(17):9443-9447.
[8] FRUTOS FJG,PéREZ R,ESCOLANO O,et al.Remediation trials for hydrocarbon-contaminated sludge from a soil washing process:Evaluation of bioremediation technologies[J].J Hazard Mater,2012,199-200(15):262-271.
[9] URUM K,PEKDEMIR T.Evaluation of biosurfactants for crude oil contaminated soil washing[J].Chemosphere,2004,57(9):1139-1150.
[10]JI Guodong,ZHOU Cui,ZHOU Guohui.Ultrasound enhanced gradient elution of super heavy oil from weathered soils using TX100/SBDS mixed salt micellar solutions[J].Ultrason.Sonochem.2011,18,506-512.
[11]SON Y,NAM S,ASHOKKUMAR M,KHIM J,et al.Comparison of energy consumptions between ultrasonic,mechanical,and combined soil washing processes[J].Ultrason.Sonochem.2012,19,395-398.
[12]CLIFFORD S.Removal of organic contamination from Buffalo River sediment by froth flotation[J].Miner Metall Process,1993,10(4):195-199.
[13]SOMASUNDARAN P,ZHANG L,ZHENG J,et al.Removal of nonvolatile hydrophobic compounds from soils by flotation I.Laboratory investigation using a mechanically agitated machine[J].Adv Environ Res,1997,1:157-165.
[14]URUM K,PEKDEMIR T,ROSS D,et al.Crude Oil Contaminated Soil Washing in Air Sparging Assisted Stirred Tank Reactor Using Biosurfactants[J].Chemosphere,2005,60(3):334-343.
[15]ZHU Kun,HART W,YANG Jiantao.Remediation of Petroleum-Contaminated Loess Soil by Surfactant-Enhanced Flushing Technique[J].J Environ Sci Health,Part A:Toxic/Hazard Subst Environ Eng,2005,40(10):1877-1893.
[16]PARIA S.Surfactant-enhanced remediation of organic contaminated soil and water[J].Adv.Colloid Interface Sci,2008,138(1):24-58.
[17]周波.表面活性劑[M].北京:化學(xué)工業(yè)出版社,2006.
[18]高建,李鑫鋼,曹宏斌.土壤治理中的膠態(tài)氣泡懸浮液清洗技術(shù)[J].環(huán)境污染治理技術(shù)與設(shè)備,2000,1(1):16-19.GAO Jian,LI Xingang,CAO Huibin.Washing Wasted Soil by Colloidal Gas Aphron Suspensions Technology[J].Tech Equip Environ Pollut Control,2000,12(1):16-19.
[19]劉程,李江華,劉博,等.表面活性劑應(yīng)用手冊(cè)[M].3版.北京:化學(xué)工業(yè)出版社,2004.