999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Numerical simulation of the double suction balance type screw compressor working process*

2014-09-05 05:58:10XiaomingWANGQingqingTIANZhongyuHESixiaoLUOGuoliangXIONGChangbiaoWAN
機床與液壓 2014年6期

Xiao-ming WANG,Qing-qing TIAN,Zhong-yu HE,Si-xiao LUO,Guo-liang XIONG,Chang-biao WAN

1Mechanical and Electrical Engineering College,East China Jiaotong University,Nanchang 330013,China;2Shenyang RailWay Bureau,Shenyang 110000,China

Numericalsimulationofthedoublesuctionbalancetypescrewcompressorworkingprocess*

Xiao-ming WANG?1,Qing-qing TIAN1,Zhong-yu HE2,Si-xiao LUO1,Guo-liang XIONG1,Chang-biao WAN1

1MechanicalandElectricalEngineeringCollege,EastChinaJiaotongUniversity,Nanchang330013,China;2ShenyangRailWayBureau,Shenyang110000,China

Based on the standardκ-εturbulence model,SIMPLEC was used to solve the N-S equations in this paper,and CFD sliding mesh method was applied to conduct the unsteady numerical simulation on the whole process of double suction balance type screw compressor.The pressure,temperature,velocity,suction and exhaust backflow and eddy distribution of the whole working process,which consist of suction,compress and exhaust,were analyzed.The simulation results provide favorable basis for the screw compressor suction,exhaust design and the optimization of double suction balance type screw compressor.

Double suction balance type;Screw compressor,Unsteady,Sliding meshing,Numerical simulation

1.Introduction

Double-suction balance type of twin screw compressor has two parallel arrangement working chambers,each of them possesses a pair of Yin-screw rotor and Yang- screw rotor,the shape of helical tooth on the same axis is the same,however,the rotation direction is opposite.Between the two working chambers,there is a medium septal part,which plays a role of allowing the above part suction,and then averagely allocate to the two working chambers;in theses two working chambers,compression and exhaust from both sides exhaust ports complete simultaneously[1].Based on the structural characteristics,problem of large axial force caused by structural defects which was faced by traditional screw compressor can be well solved.As the same as traditional screw compressor,double-suction balance type of twin screw compressor is also a kind of displacement compressor whose working volume is in gyroscopic motion,the gas compression depends on the change of volume,while the change of volume depends on the gyroscopic motion of Yin and Yang rotors.So,reasonable disposition of suction inlet and exhaust port will improve the whole working processes including suction,compression and exhaustion.

As the screw compressor working process influenced by many factors,description by using simple equation will lead to big error,so many scholars have done a lot of research in this area.For example,reference[2] introduced some energy analysis results,and established numerical simulation basic equations for this working process.But these mathematical models were limited to their basic assumptions,so it is hard to real numerically simulate the screw compressor during the whole working process.In this paper,CFD sliding mesh technology was applied to the numerical simulation of screw compressor with internal flow field in the working process,this could provide data and example for exhaust optimization design and engineering application,and possesses important practical application value.

2.Governing equation

2.1.Basicgoverningequationsoffluidmotionandheattransfer

The essence of gas flow in screw compressor is the problem of fluid flow and heat transfer,fluid flow is one of the most complicated physical behaviors,as compared with stress analysis in structural design field,the processes of model establishment and numerical simulation are more difficult.However,for any complicated turbulent flow,the N-S equation is proper[3].The governing equations of fluid flow and heat transfer were given in Equations 1~3:

Continuity equation:

(1)

Where,ρis the fluid density;uiis component of fluid velocity along theidirection.

Momentum conservation equation

(2)

Where,pis static pressure;τijis stress vector;ρgiis weight component alongidirection;Fiis other energy item caused by resistance and energy.

Energy conservation equation

(3)

Where,his entropy;kis molecular conductivity;ktis conductivity caused by turbulent transfer;Shis the defined volume source.

2.2.Standardκ-εmodelequation

Standardκ-εmodel is a semi-empirical formula,it is based on turbulent kinetic energy and diffusion rate.The basic equations are shown in Eq.(4) and Eq.(5),respectively[4]:

Turbulent kinetic energyκequation

(4)

Turbulent kinetic energy dissipation rateεequation:

(5)

Where,μlis the laminar viscous coefficient;μtis the turbulent flow viscous coefficient;Gkis turbulent kinetic energy caused by laminar flow velocity gradient;Gbis turbulent flow energy caused by buoyancy force;C1ε、C2ε、C3ε、σkandσεare empirical constants,respectively.

3.Three-dimensional modeling and meshing

In order to simulate backflow and eddy situation in compressor exhaust port,model is divided into five parts,i.e.medium septal part,Yin and Yang rotors,block,exhaust port and gas storage tank.Since the profile of screw compressor is very complex,it is not convenient to model in ANSYS WORKBENCH software.In this paper,PRO/E is used to make three-dimensional modeling,then the well-established model will be imported to ANSYS WORKBENCH through seamless connection.Then contact surface in the MESH wizard will be set up and the type of grid for the tetrahedron unit and the minimum mesh size of 2 mm will be defined.Once the meshing process was completed,the meshed model is shown in Figure1.The total element number is 245 076,and the pitch point number is 1 231 727.

Figure 1.Meshing of the whole screw compressor

4.Boundary condition,Solution control and Compution method

4.1.Boundarycondition

The inlet boundary condition provided by Fluent mainly include velocity inlet,mass flow rate inlet and pressure inlet;and the outlet boundary condition include pressure outlet,outflow,air outlet,ventilator and far field pressure[5].In this paper,the inlet and outlet are pressure inlet and outlet,respectively,and the related pressure and backflow temperature are set up.

Wall surface is used to separate solid region and fluid region,the Yin and Yang rotor wall surfaces were set as moving surfaces,the rotation origin is defined,so does the axis direction and Yin and Yang rotors rotate speeds.The Yin and Yang rotors rotate speeds are 4000 r/min and 6000 r/min,respectively.Apart from,other wall surfaces were set as static wall.

4.2.Equationsolverselection

In this paper,segregated solver is adopted,the discretization schemes of basic equations were all adopted second-order upwind scheme.The solve method was adopted as SIMPLEC algorithm,besides,for the sake of ensuring the coordination among different discrete equations,in this paper by adjusting the relaxation factor to ease the in-coordination of convergence[6].

4.3.Unsteadycomputationmethod

The unsteady computation of screw compressor was accomplished by using the relative sliding mesh between motion region and static region.It is a kind of fully unsteady solution method.Its basic thought is at any time step,the calculation of moving region and static region will be conducted,respectively,and the parameter were passed by interface.With the beginning of the next time step,grid in motion region begins to move,while grid in static region state still.In this time,the grid in both interfaces begins to relative slip[7].

5.Results analysis

Through the numerical simulation on the whole working process of double-suction balance type screw compressor,the pressure contour,temperature contour,velocity contour andXYcontour could be obtained.Analyze these results,the inner pressure,temperature and velocity distribution of compressor could be obviously known.Besides,by the separation analysis of exhaust seat,it could be confirmed whether backflow and eddy appear in exhaust port[8-9].

5.1.Pressuredistribution

In order to understand the whole pressure distribution within the compressor,pressure contour and XY chart could be analyzed.Figure 2 and Figure 3 represented the three dimensional pressure contour andXYchart,respectively.

Figure 2.Three dimensional pressure atlas

Figure 3.Z=1,pressure distribution XY chart

According to Figure 2,inner pressure was gradually increased from air inlet port to the export of air storage tank.The pressure in air inlet port is 0.5 MPa;inner pressure is about 0.9 MPa,the highest pressure at export of air storage bank could reach up to 2.1 MPa.

According to Figure 3,x-coordinate stands for axial position of every part,y-coordinate stands for total pressure of every part.Figure 3 shows that the inner pressure of suction port to both side air storage export is symmetrically distributed,which coincides with physical truth.The pressure of medium septal part nearly constant,but the pressure of exhaust seat changes greatly,while the pressure of block and air storage bank change slowly.

5.2.Temperaturedistribution

If the temperature of exhaust is too high,the inner lubrication oil might be carbonized,this may lead to compressor poor lubrication and then born out,so it is necessary to analyze the inner temperature of compressor.Figure 4 and Figure 5 show the three dimensional temperature distribution andXYchart,respectively.

Figure 4.Three dimensional temperature atlas

Figure 5.Z=1,temperature distribution XY chart

According to Figure 4,the inner temperature of suction seat to air storage bank export gets increased gradually.When the pressure of exhaust port reach up to 2.1 MPa,the temperature could be greatly improved,the highest temperature could be up to 360 K,the lowest temperature,about 250 K,appears in suction port.

In Figure 3,x-coordinate stands for axial position of every part,y-coordinate stands for total temperature distribution of every part.According to Figure 5,the temperatures of medium septal part are nearly constant,the block temperature change greatly,the change rate of exhaust seat is the biggest.

5.3.Velocityandexhaustportbackflowandeddydistribution

In order to obtain the inner velocity distribution and suction exhaust port backflow and eddy distribution[10],an analysis of total velocity vector diagram and exhaust seat velocity vector diagram were conducted,as shown in Figure 6 and Figure 7.

Figure 6.Total velocity vector diagram

Figure 7.Exhaust seat velocity vector diagram

Figure 6 showed that the distribution of velocity in double suction balance type screw compressor is symmetrical.Air entered from suction port,then flew to Yin and Yang rotors and lastly exhausted port,the biggest velocity could reach up to 417 m-1s,the region with big velocity is near exhaust seat and air storage bank export,this is due to the big compress before entry them,which leads to big velocity.

According to Figure 7,when the pressure of air storage bank reach up to 2.1 MPa,it wil generate big backflow in exhaust seat.Besides,at the corner of exhaust seat,it is easy to form eddy,the reason is that a part of gas outflow from the outlet of compressor,and a part of gas flow from gas storage bank back to exhaust seat,and then eddy could be easily formed.

6.Conclusion

Numerical simulation of double suction balance type screw compressor could really reflect the pressure field,temperature field and velocity field distribution situations of the whole working process of balance type screw compressor.In addition,the analysis of backflow and eddy situations can provide useful data for compressor suction,exhaust design and optimization,and play an important role in promoting the screw compressor numerical design.

[1]Xiao-Ming Wang,Zhi Yang,et al.Design of a new twin-screw compressor based on load balanced configuration[J].Machine Tool &Hydraulics,2012,40(11):81-83.

[2]Si Huang,Guo-mang Yang,et al.Numerical Simulation for Transient Flow in a Rotary Compressor Using Dynamic Mesh Technique[J].Fluid Machinery,2010,38(1):12-15.

[3]Ming-gao Li,Ming Li.Flow Field analysis Technology and Application examples of ANSYS 13.0[M].Beijing: China Machine Press,2012.

[4]Yan-cheng Chen,Zong-huan Guo,et al.Simulation of Flow Field in the Abrasive Water Jet Nozzle[J].Hydraulics and Pneumatics,2012(10):67-69.

[5]Fan Jiang,Wei-ping Chen,et al.Dynamic simulation of flow field inside of lubricate gear pimp[J].Modern Manufacturing Engineering,2007(6):116-118.

[6]Zhan-zhong Han.Fluid simulation calculation example and analysis[M].Beijing: Beijing institute of Technology Press,2009.

[7]Le Hu,Shu-jia Zhang,et al.A numerical study of centrifugal pump using unsteady method compared with steady multi-phase position method[J].Journal of Zhejiang university of Technology,2009,37(6):643-652.

[8]An-na Diao,Ming-zhao Xu,et al.Numerical simulation of Gas in Discharge Chanmber of Screw Compressor[J].Fluid Machinery,2009,37(8):29-33.

[9]Shuo-yuan Wang,Bo Gu,et al.The effect of two-exhaust structure on the efficiency of rotary compressor[J].2007,7(3):77-79.

[10]Ya-guo LYU,Zhen-xia Liu,et al.Numerical simulation of the two-phase flow in external gear pump[J].Lubrication Engineering,2012,37(1):18-21.

摘要:在軸流式血泵的研發過程中,動脈局部流場中可能產生流動剪切率非常低的區域,因此有必要考慮血液的非牛頓特性。建立了軸流式血泵模型,通過CFD仿真分析得到血泵轉速和流量的變化對血泵出入口壓力分布和速度分布的影響,并采用水和甘油(2∶1)的混合流體替代血液,對設計的血泵進行驅動實驗,測量了軸流式血泵輸出流量和壓力參數。結果表明:所設計的血泵在規律上和仿真是相符的。

關鍵詞:軸流式血泵;非牛頓流體;流場分布;CFD仿真

中圖分類號:R318.11

雙吸平衡式螺桿壓縮機工作過程的數值模擬*

王小明?1,田青青1,賀忠宇2,羅嗣驍1,熊國良1,萬長標1

1華東交通大學 機電工程學院,南昌 330013;2沈陽鐵路局,沈陽 110000

通過基于標準的κ-ε方程湍流模型,采用SIMPLEC算法求解N-S方程,利用CFD嵌入式滑移網格技術對雙吸平衡式螺桿壓縮機整機工作過程進行非定常數值模擬。對螺桿壓縮機從吸氣、壓縮到排氣整個工作過程的壓力分布、溫度分布、速度分布以及排氣座回流、渦流分布情況進行了分析,從而為雙吸平衡式螺桿壓縮機排氣口設計以及優化提供有利的依據。

雙吸平衡式;螺桿壓縮機;非定常;滑移網格;數值模擬

TH45

軸流式血泵流場CFD仿真*

謝 雄1,2,譚建平?1,2

1中南大學 高性能復雜制造國家重點實驗室,長沙 410083;2中南大學 機電工程學院,長沙 410083

2013-11-06

*Project supported by Technical Personnel Service Firm Action Program of National Science and Technology (SQ2009GJC5005668),Science and Technology Support Program of Jiangxi Province ( 2010BGB00601),University-industry Cooperation Support Program of Jiangxi education department (GJJ10005).

? Xing-ming WANG,Senior engineer.E-mail: wxm2003@163.com

10.3969/j.issn.1001-3881.2014.06.004

主站蜘蛛池模板: 国产视频一二三区| 国产精品尤物铁牛tv| 最新精品国偷自产在线| 天天色综网| 日韩精品无码免费一区二区三区 | 国产精品v欧美| 国产亚洲男人的天堂在线观看 | 97人人模人人爽人人喊小说| 日韩精品成人在线| 国产一区成人| 国产免费羞羞视频| 欧美天堂在线| 成人a免费α片在线视频网站| 伊人久久大香线蕉影院| 一本大道无码日韩精品影视| 亚洲无码日韩一区| 国产无套粉嫩白浆| 久久久四虎成人永久免费网站| jizz国产视频| 国产成人亚洲综合a∨婷婷| 青青青国产免费线在| 国产成人精品综合| 免费av一区二区三区在线| 欧美亚洲香蕉| 性69交片免费看| www.youjizz.com久久| 亚洲免费人成影院| 亚洲人成网站色7799在线播放| 午夜视频www| 国产视频一区二区在线观看| 无码区日韩专区免费系列| 国产成a人片在线播放| 欧美日韩午夜| 国产9191精品免费观看| 91福利免费视频| 色欲色欲久久综合网| 欧美成一级| 99re热精品视频国产免费| 国产成人免费视频精品一区二区| 亚洲三级成人| 欧美有码在线观看| 中文国产成人精品久久| 亚洲综合18p| 国产精品污视频| a色毛片免费视频| 婷婷中文在线| 午夜三级在线| 亚洲嫩模喷白浆| 欧美午夜视频| 欧美日韩国产在线观看一区二区三区| 日韩大乳视频中文字幕| 欧美精品在线免费| 女人爽到高潮免费视频大全| 国产免费怡红院视频| 久久精品人妻中文视频| 精品国产免费第一区二区三区日韩| 亚洲无码91视频| 国产成人三级| 国产一级毛片网站| 欧美视频在线不卡| 欧美亚洲日韩中文| 国产一区三区二区中文在线| 国产成人综合在线观看| 久久亚洲精少妇毛片午夜无码| 她的性爱视频| 亚洲福利网址| 风韵丰满熟妇啪啪区老熟熟女| 欧美黄网站免费观看| 国产乱子伦精品视频| 国产精品蜜芽在线观看| 九色91在线视频| 高h视频在线| 国产精品天干天干在线观看| 国产成人狂喷潮在线观看2345| 日本在线视频免费| 看国产毛片| 伊人久久婷婷| 成人精品免费视频| 中文字幕天无码久久精品视频免费| 天天躁日日躁狠狠躁中文字幕| 香蕉久人久人青草青草| 成人在线观看不卡|