999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Uniform asymptotics for finite-time ruin probability in somedependent compound risk models with constant interest rate

2014-09-06 10:49:30YangYangLiuWeiLinJinguanZhangYulin
關(guān)鍵詞:南京模型

Yang Yang Liu Wei Lin Jinguan Zhang Yulin

(1School of Economics and Management, Southeast University, Nanjing 210096, China)(2School of Mathematics and Statistics, Nanjing Audit University, Nanjing 210029, China)(3College of Mathematics and System Science, Xinjiang University, Urumqi 830046, China)(4Department of Mathematics, Southeast University, Nanjing 210096, China)

?

Uniform asymptotics for finite-time ruin probability in somedependent compound risk models with constant interest rate

Yang Yang1,2Liu Wei3Lin Jinguan4Zhang Yulin1

(1School of Economics and Management, Southeast University, Nanjing 210096, China)(2School of Mathematics and Statistics, Nanjing Audit University, Nanjing 210029, China)(3College of Mathematics and System Science, Xinjiang University, Urumqi 830046, China)(4Department of Mathematics, Southeast University, Nanjing 210096, China)

Consider two dependent renewal risk models with constant interest rate. By using some methods in the risk theory, uniform asymptotics for finite-time ruin probability is derived in a non-compound risk model, where claim sizes are upper tail asymptotically independent random variables with dominatedly varying tails, claim inter-arrival times follow the widely lower orthant dependent structure, and the total amount of premiums is a nonnegative stochastic process. Based on the obtained result, using the method of analysis for the tail probability of random sums, a similar result in a more complex and reasonable compound risk model is also obtained, where individual claim sizes are specialized to be extended negatively dependent and accident inter-arrival times are still widely lower orthant dependent, and both the claim sizes and the claim number have dominatedly varying tails.

compound and non-compound risk models; finite-time ruin probability; dominatedly varying tail; uniform asymptotics; random sums; dependence structure

(1)

In the non-compound model, whereNk=1,k≥1, the finite-time ruin probability can be simplified as

(2)

This paper aims to investigate the asymptotics for the finite-time ruin probabilities in Eqs.(1) and (2) holding uniformly for alltsuch thatλ(t) is positive. Define the setΛ={t:λ(t)>0}.

1 Preliminaries

Hereafter, all the limit relationships hold forx→∞. For two positive bivariate functionsa(x,t) andb(x,t), we writea(x,t)b(x,t) (or, equivalently,b(x,t)?a(x,t)) holds uniformly for alltin a nonempty setA, if lim sup supt∈Aa(x,t)/b(x,t)≤1; we writea(x,t)~b(x,t) holds uniformly for allt∈A, ifa(x,t)b(x,t) anda(x,t)?b(x,t). For realy, the greatest integer smaller than or equal toyis denoted by [y].

(3)

(4)

and they are said to be widely orthant dependent (WOD) if they are both WUOD and WLOD.

2 Uniform Asymptotics for Finite-Time Ruin Probabilities

(5)

for someε0>0. Then for anyT∈Λ, it holds that uniformly for allt∈Λ∩[0,T],

(6)

Lemma 1 Under the conditions of Theorem 1, for allT∈Λ, it holds that uniformly fort∈Λ∩[0,T],

(7)

Proof The proof of Lemma 1 follows the line of Theorem 1.1 in Ref.[5].

asε↓0, which implies that the desired lower bound in (6) holds. Again by Lemma 1, we obtain that uniformly for allt∈Λ∩[0,T],ψ1(x,t)≤P(Dδ(t)>x)

In the following, we study the uniform asymptotics for the finite-time ruin probability in a compound renewal risk model by the investigation of the asymptotic tail behavior of random sums. Some related results can be found in Refs.[6-8].

DenotethepartialsumbySn=X1+X2+…+Xn,n≥1.

Lemma 2 Let {Xn,n=1} be END nonnegative r.v.s with common distributionF∈Dand meanμF>0, andNbe an integer-valued r.v., independent of {Xn,n=1}, with distributionG∈Dand meanμG>0. Then

(8)

Proof For any 0<ε<1 and integerm, we divide the tail probability ofSNinto three parts:

P(N=i)=:L1+L2+L3

(9)

ByF∈Dand Theorem 1 in Ref.[9], we have that

(10)

For anym

P(Si>x) =P(Si-iμF>x-iμF)≤

where the last step usesF∈DandCis a positive constant irrespective toi. By using Theorem 1 in Ref.[9] and the dominated convergence theorem, we obtain that

(11)

(12)

Thus, combining (9) to (12), we can obtain the upper bound in (8).

Now we estimate the lower bound ofP(SN>x). For any 0<ε<1 and integerm, we have that

L1+L4

(13)

ForL4, it holds that

Hence, by the strong law of the large numbers of END r.v.s[11]andF∈D, we obtain that

(14)

Therefore, (13), (10) and (14) yield the lower bound in (8).

(15)

which, byF∈DandG∈D, implies thatH∈D. So, by (1), Theorem 1 and (15), for any fixedT∈Λ, we obtain that

ψ(x,T)

(16)

(17)

holduniformlyforallt∈Λ∩[0,T]. Note that by (15), it holds that for anyy>1,

[1]Tang Q H, Su C, Jiang T, et al. Large deviations for heavy-tailed random sums in compound renewal model [J].StatistProbLett, 2001, 52(1): 91-100.

[2]Maulik K, Resnick S. Characterizations and examples of hidden regular variation [J].Extremes, 2004, 7(1): 31-67.

[3]Wang K Y, Wang Y B, Gao Q W. Uniform asymptotics for the finite-time ruin probability of a dependent risk model with a constant interest rate [J].MethodolComputApplProb, 2013, 15(1): 109-124.

[4]Liu L. Precise large deviations for dependent random variables with heavy tails [J].StatistProbLett, 2009, 79(9): 1290-1298.

[5]Tang Q H. Heavy tails of discounted aggregate claims in the continuous-time renewal model [J].JApplProb, 2007, 44(2): 285-294.

[6]Yang Y, Wang Y B, Leipus R, et al. Asymptotics for tail probability of total claim amount with negatively dependent claim sizes and its applications [J].LithMathJ, 2009, 49(3): 337-352.

[7]Yang Y, Lin J G, Huang C, et al. The finite-time ruin probability in two nonstandard renewal risk models with constant interest rate and dependent subexponential claims [J].JKoreanStatistSociety, 2012, 41(2): 213-224.

[8]Yang Y, Wang K Y, Liu J. Asymptotics and uniform asymptotics for finite-time and infinite-time absolute ruin probabilities in a dependent compound renewal risk model [J].JMathAnalAppl, 2013, 398(1): 352-361.

[9]Yi L, Chen Y, Su C. Approximation of the tail probability of randomly weighted sums of dependent random variables with dominated variation [J].JMathAnalAppl, 2011, 376(1): 365-372.

[10]Yang Y, Wang K Y. Precise large deviations for dependent random variables with applications to the compound renewal risk model [J].RockyMounJMath, 2013, 43(4): 1395-1414.

[11]Chen Y, Chen A, Ng K W. The strong law of large numbers for extend negatively dependent random variables [J].JApplProb, 2010, 47(4): 908-922.

帶有常數(shù)利息率的相依復(fù)合風(fēng)險(xiǎn)模型中有限時(shí)破產(chǎn)概率的一致漸近性

楊 洋1,2劉 偉3林金官4張玉林1

(1東南大學(xué)經(jīng)濟(jì)管理學(xué)院,南京 210096) (2南京審計(jì)學(xué)院數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,南京 210029) (3新疆大學(xué)數(shù)學(xué)與系統(tǒng)科學(xué)學(xué)院,烏魯木齊 830046) (4東南大學(xué)數(shù)學(xué)系,南京 210096)

考慮了2個(gè)帶有常數(shù)利息率的相依更新風(fēng)險(xiǎn)模型.首先研究了非復(fù)合風(fēng)險(xiǎn)模型,其中索賠額是上尾漸近獨(dú)立且?guī)в锌刂谱儞Q尾分布的非負(fù)隨機(jī)變量,索賠時(shí)間間隔是寬下象限相依的,保費(fèi)收入過(guò)程是一個(gè)非負(fù)的隨機(jī)過(guò)程,利用風(fēng)險(xiǎn)理論中的方法,得到了有限時(shí)破產(chǎn)概率在某個(gè)有界區(qū)間上的一致漸近性.在此基礎(chǔ)上,利用隨機(jī)和尾漸近性的分析方法,進(jìn)一步研究獲得了更為復(fù)雜且合理的復(fù)合相依更新風(fēng)險(xiǎn)模型中有限時(shí)破產(chǎn)概率的一致漸近性公式,其中單個(gè)索賠額特殊化為廣義負(fù)相依的,并且事故時(shí)間間隔仍然保持寬下象限相依的,索賠額和索賠次數(shù)均為控制變換尾的.

復(fù)合及非復(fù)合風(fēng)險(xiǎn)模型;有限時(shí)破產(chǎn)概率;控制變換尾;一致漸近性;隨機(jī)和;相依結(jié)構(gòu)

O211.4

s:The National Natural Science Foundation of China (No. 11001052, 11171065, 71171046), China Postdoctoral Science Foundation (No. 2012M520964), the Natural Science Foundation of Jiangsu Province (No. BK20131339), the Qing Lan Project of Jiangsu Province.

:Yang Yang, Liu Wei, Lin Jinguan, et al. Uniform asymptotics for finite-time ruin probability in some dependent compound risk models with constant interest rate[J].Journal of Southeast University (English Edition),2014,30(1):118-121.

10.3969/j.issn.1003-7985.2014.01.022

10.3969/j.issn.1003-7985.2014.01.022

Received 2013-08-29.

Biography:Yang Yang (1979—), male, doctor, associate professor, yyangmath@gmail.com.


登錄APP查看全文

猜你喜歡
南京模型
一半模型
南京比鄰
“南京不會(huì)忘記”
重尾非線性自回歸模型自加權(quán)M-估計(jì)的漸近分布
南京·九間堂
金色年華(2017年8期)2017-06-21 09:35:27
3D打印中的模型分割與打包
又是磷復(fù)會(huì) 又在大南京
南京:誠(chéng)實(shí)書店開(kāi)張
南京、南京
FLUKA幾何模型到CAD幾何模型轉(zhuǎn)換方法初步研究
主站蜘蛛池模板: 制服丝袜无码每日更新| 久久这里只有精品2| 天天色综网| 久草网视频在线| 一区二区在线视频免费观看| 老司机精品久久| 亚洲精品另类| 无码丝袜人妻| 日韩免费毛片视频| 国产精品免费久久久久影院无码| 国产偷倩视频| 精品三级在线| 国产免费a级片| 亚洲成人精品| 国产精品福利导航| 国产欧美精品一区二区| 色爽网免费视频| 91国内视频在线观看| av性天堂网| 欧美日韩一区二区在线播放| 日韩一区二区在线电影| 国产亚洲精品97在线观看| 在线观看网站国产| 激情六月丁香婷婷| 亚洲免费成人网| 成人夜夜嗨| 欧美a在线看| 在线观看免费国产| 亚洲中文字幕久久精品无码一区| 国产成年女人特黄特色大片免费| 青青网在线国产| 成年看免费观看视频拍拍| 亚洲欧美日韩精品专区| 国产精品亚洲欧美日韩久久| 国产在线观看91精品| 日韩欧美一区在线观看| 天天激情综合| 天天综合色网| 香蕉国产精品视频| 99久久人妻精品免费二区| 亚洲国产成人麻豆精品| 国内黄色精品| 国产一区二区色淫影院| 亚洲三级成人| 亚洲天堂久久久| 成人国产小视频| 久久久久久国产精品mv| 精品视频在线一区| 2024av在线无码中文最新| 九九热在线视频| 欧美、日韩、国产综合一区| 国产激情影院| 1024国产在线| 国产在线麻豆波多野结衣| 在线国产毛片| 男人天堂伊人网| 人妻91无码色偷偷色噜噜噜| 欧美区国产区| 国内精品伊人久久久久7777人| 亚洲国产天堂在线观看| 亚洲人成网7777777国产| 国产丰满大乳无码免费播放| 欧美日韩久久综合| 久久综合五月婷婷| 黄色成年视频| 婷婷色丁香综合激情| 国产成人免费手机在线观看视频 | 91在线中文| 国产精品55夜色66夜色| 欧美激情,国产精品| 五月天福利视频| 五月婷婷丁香综合| 丁香婷婷久久| 亚洲黄色激情网站| 精品一区二区三区自慰喷水| 精品国产一区二区三区在线观看| 尤物特级无码毛片免费| 日韩无码黄色| 色悠久久久久久久综合网伊人| 97国产一区二区精品久久呦| 欧美不卡视频在线| av一区二区无码在线|