盧明+桂衛華+彭濤+謝永芳
收稿日期:20130917
基金項目:國家創新研究群體科學基金資助項目(61321003);國家自然科學基金重點資助項目(61134006);國家自然科學基金資助項目(61273169)
作者簡介:盧明(1979-),男,湖南益陽人,中南大學博士研究生
通訊聯系人,Email: mlu@hnust.edu.cn
摘要:泡沫圖像特征是指泡沫圖像中與浮選性能相關的局部黑色水化區域大小,即局部光譜特征.針對這一局部光譜特征形狀、大小無規則性,提出了一種基于多維主元分析的特征提取方法,并將提取的特征應用于銅浮選粗選過程病態工況識別.首先,描述了銅浮選粗選過程,分析了影響粗選過程的主要因素和黑色水化區域形成機理;然后,提出一種基于多維主元分析的圖像局部光譜特征提取方法;最后,將基于多維主元分析的圖像局部光譜特征提取算法應用于銅浮選粗選泡沫圖像,并將所提取的圖像特征用于銅粗選病態工況識別.工業現場數據驗證了所提方法的有效性.
關鍵詞:泡沫圖像;圖像特征;多維主元分析(MPCA);病態工況識別;銅粗選過程
中圖分類號:TP391.41 文獻標識碼:A
Sick Condition Recognition Based on the Image
Feature of Froth Image in Copper Rough Process
LU Ming1,2,GUI Weihua1,PENG Tao1,XIE Yongfang1
(1.School of Information Science and Engineering, Central South Univ, Changsha, Hunan410083,China;
2.School of Information and Electrical Engineering, Hunan Univ of Science and Technology, Xiangtan, Hunan411201,China)
Abstract:The image features of copper flotation froth image means the size of the area of local black hydration in the froth image, which is called local spectral feature and related to flotation performance. A local spectral feature extraction method based on MPCA was proposed for the irregularity of the size and the shape, and the extracted features were used in copper rougher flotation process to identify sick conditions. Firstly, we described the copper rougher flotation process and analyzed the impact of the main factors roughing process and the formation mechanism of black hydration region. Then, a method was proposed to extract the local feature of image based on MPCA. Lastly, the image local feature extraction algorithm based on MPCA was applied to the copper flotation rougher froth image and the extracted image features were used in copper rougher process for sick condition recognition. The validity of the proposed method has been verified with industrial data.
Key words:froth images;image feature;MultiPrincipal Component(MPCA);sick condition recognition;copper rough process
浮選是一種應用最為廣泛的將有用礦物從礦石中分離出來的選礦方法.一直以來, 選廠的生產操作都是依靠有經驗的工人對浮選泡沫進行肉眼觀察完成的,對泡沫的判斷缺乏客觀標準, 使得人工觀測為主的礦物浮選過程難以處于穩定最優運行狀態[1-2].采用機器視覺代替人類視覺, 利用圖像處理技術從泡沫圖像中提取出最為顯著、有效的視覺特征,對浮選泡沫進行客觀描述, 并將視覺特征應用于浮選過程的工況識別,能為礦物浮選過程實現實時控制與優化提供操作指導[3-5].
浮選流程大多分為粗選、掃選、精選3個流程單元,每個流程單元由數量不等的浮選槽組成,各個流程之間彼此連接,相互影響[6-8].其中粗選首槽浮選工況好壞,直接影響了后續流程的操作和最終的產品質量及產能.在整個流程中,粗選過程工況的識別尤為重要.以粗選首槽泡沫品位為評價指標,將銅粗選工況分為“正?!焙汀安B”兩個區域.銅粗選過程中的“病態”工況是指因初始條件和操作條件改變而導致粗選產品質量不能滿足后續浮選流程要求的工況.當出現病態工況時,浮選泡沫圖像中的泡沫顏色(光譜)和形態特征會發生相應的變化.
本文描述了銅浮選粗選過程的特點,提出以黑色水化區域面積作為銅浮選粗選泡沫圖像局部光譜特征,并針對這一特征大小、形狀無規則性,提出一種基于MPCA的局部光譜特征提取新方法,并將所提取的特征用于銅浮選粗選病態工況識別.
1銅浮選粗選過程描述及泡沫圖像局部光
譜特征
如圖1所示,為某銅浮選廠生產流程,分為粗選、掃選、精選3個流程單元.虛線框為粗選過程.在整個銅浮選流程中,粗選是礦石經過磨礦、注水、分級后進入選別的第1步.粗選首槽的浮選工況好壞,直接影響了后續流程的操作和最終的產品質量及產能.粗選工況好壞的衡量指標是粗精礦品位,根據冶金學工業試驗,粗選的泡沫品位不能太高也不能太低,需要控制在某一范圍內,超出這一范圍, 則視為粗選過程工況處于“病態”,需要及時調整操作變量.長期以來,粗選過程的操作依賴于“人工看泡”[9-11].但是浮選現場環境惡劣,勞動強度大,而且人工判別的方式主觀性太強,易導致工況波動.如圖1所示,在粗選首槽安裝CCD彩色攝像機獲取粗選首槽泡沫圖像,從泡沫圖像中提取出最為顯著、有效的視覺特征,并將所提取的特征用于銅粗選過程病態工況識別,可以規范操作,為后續流程的調整提供指導.
銅粗選過程中的病態工況是指因初始條件和操作條件改變而導致粗選產品質量不能滿足后續浮選流程要求的工況.可以用粗選首槽泡沫品位作為粗選過程工況的評價指標.粗選過程中病態工況的識別是基于機器視覺的浮選過程監控的關鍵.通過長期觀察發現,銅粗選槽溢流口處的泡沫狀態能很好地反應泡沫上礦物附著的情況.如果目標礦物附著不好,泡沫頂部或在泡沫連接處因為沒有承載金屬礦粒呈現水化的反光區域,顏色為黑色.這一區域過大則水化現象嚴重,泡沫上附著金屬礦粒較少,泡沫品位低;反之則泡沫坍塌現象嚴重,泡沫上附著的金屬礦粒掉入礦漿,泡沫品位也會降低.黑色水化區域的大小能很好地反映當前浮選工況.某銅浮選粗選首槽泡沫圖像及局部黑色水化區域如圖2所示,對比泡沫背景,水化區域在視覺上呈現為黑色,與泡沫圖像中目標礦物的顏色不一致,形狀、大小沒有規則.
2基于MPCA的圖像局部光譜特征提取
多元圖像分析是指利用PCA,PLS等多元統計分析工具,將多個通道圖像數據投影到互不相關的主成分空間上,利用主元和圖像像素變量之間的關系來提取圖像特征[12-13].
將一幀原始RGB圖像表示為一組由單變量組成的三維數據集合(I×J×M),其中I,J為像素幾何坐標,M為光譜坐標,如圖3所示.(I×J×M)可看作單變量圖像fM(x,y)在M方向的堆疊,M=R,G,B.
先將(I×J×M)展開成2維數據矩陣X(N×M),如圖3所示,其中N=I×J.于是,I×J個像素的fM(x,y)可以按照行或者列特定的順序展開成一維的N×1圖像像素矢量.
展開后的2維多元圖像矩陣可以寫成:
X(I×J)×M=[X1 X2 … XM]N×M.(1)
對X(N×M)進行PCA,將其分解成A(A≤M)個主成分的線性組合:
XN×M=∑Aa=1tapTa+E. (2)
式中:ta(a=1,2,…,A,A≤M)為標準正交的N維主成分得分矢量;pa(a=1,2,…,A,A≤M)為標準正交的M維主成分負載矢量;E為N×M維的殘差矩陣.當A=M時,殘差矩陣E為0矩陣.
對于展開后的多元圖像矩陣X(N×M),一般有N遠大于M,也就是矩陣X(N×M)在行方向上元素很多,在列方向上元素很少.對于這樣的“窄”矩陣進行PCA分解,常采用構造“核”矩陣的方法[14-15]來減少計算時間.構造核矩陣:
K=XTX. (3)
其中K為Μ×Μ的低維核矩陣.
然后對K進行奇異值特征分解,得到的特征矢量就是主成分負載矢量pa,將pa根據特征值大小按照降序排列,得到排序以后的負載矢量pda,pd1為最大的特征值對應的特征矢量.由負載矢量pda,可計算出主元得分矢量tda:
tda=Xpda. (4)
得分矢量tda中的每個元素對應于3個變量(R,G,B)的加權平均像素,是不同像素位置的像素強度信息的壓縮表述,代表了原圖像中不同像素位置的光譜信息[16-18].如果同一圖像中不同像素位置像素光譜特征相同,這些像素的得分值的關系將完全相同,即原始圖像中所有具有相同光譜特征的像素的得分值在散點圖中將重疊或者至少在同一區域.因此,根據累計貢獻率選取主元個數,畫出不同主元的得分矢量強度散點圖并在散點圖中標記出感興趣的區域就可以捕獲原始圖像中的局部區域光譜特性.
依據公式(5),式中為Kronecker積,構建第一得分圖像Ta (既d=1時的圖像):
Ta=Xpda. (5)
然后利用得分值和組成該區域的像素變量之間的關系將標記的感興趣區域映射到第一得分圖像Ta上.
將特征像素值約束為0到255之間的整數,即:
Ta(i,j)=
RoundTa(i,j)-min [Ta(i,j)]max [Ta(i,j)]-min [Ta(i,j)]×255.(6)
式中:max [Ta(i,j)],min [Ta(i,j)]分別為主元圖像中最大像素值和最小像素值.
統計像素點個數,計算標記區域的面積大小SL作為圖像的局部區域光譜特征:
SL=N×Si. (7)
式中:N為標記區域的像素點個數;Si為單位像素面積.
3實驗結果與分析
3.1基于MPCA的銅浮選泡沫圖像局部光譜特征
提取算法
根據銅浮選泡沫圖像中的黑色水化區域的特點,提出基于MPCA的銅浮選泡沫局部特征提取算法,其步驟如下:
1)將原始圖像(I×J×M)展開成二維數據X(N×M),其中N=I×J.
2)構造核矩陣K=XTX,并對K矩陣進行奇異值分解,計算負載矢量pa,并將pa根據特征值大小按照降序排列,得到排序以后的負載矢量pda.
3)按式(4)計算主元得分矢量,計算累積貢獻率CCR,根據累計貢獻率CCR≥85%,選取主元個數.
4)依據選取的主元,繪制主元得分矢量強度散點圖,標記局部區域對應的得分值聚集區或離群區,同時記錄得分值所對應的特征像素值和空間位置.
5)按照式(5)重構第一得分圖像,利用得分值和局部區域特征像素變量之間的關系,將得分矢量強度散點圖中標記的區域映射到第一得分圖像.
6)按照式(6)將特征像素值約束為0~255之間的整數.按照式(7)計算標記區域面積作為光譜特征.
3.2銅浮選泡沫圖像采集及局部光譜特征提取
如圖4所示,在銅粗選首槽泡沫表層上方110 cm處搭建浮選泡沫圖像采集系統,系統由光源,工業攝像機,信號傳輸裝置構成.攝像機視場范圍為23.84 cm×17.88 cm,在如表1所示入礦條件下,采集泡沫圖像樣本200個,選取包含了明顯黑色水化區域的典型圖像作為訓練圖像,其余圖像作為測試圖像.同時采集對應時刻的銅粗選首槽泡沫樣本,獲得泡沫品位化驗值.
針對訓練圖像,按照3.1節算法步驟1),2)建立MPCA全局模型,即計算負載矢量:
pd1=0.575 5 0.579 0.577 5T,
pd2=-0.523 0.117 0.845T.
然后按照步驟3),4)計算出測試圖像的得分矢量,選取兩個主元t1,t2,畫出其得分矢量強度散點圖,如圖5所示,第一得分矢量值為-4~-2,第二得分矢量值為0.2~-0.6所對應的像素為局部區域特征像素.依據得分值和特征像素之間的關系,記錄特征像素值、特征像素個數和空間位置.
根據步驟5)重構第一得分圖像,利用得分值和特征像素變量之間的關系,將得分矢量強度散點圖中對應的局部區域投影回第一得分圖像,如圖6所示.這一投影過程需結合圖5,反復調整,直至所標記區域滿意為止.統計特征像素個數,并根據單位像素面積,計算標記區域的面積SL.
最后,針對其余圖像,重復步驟3)至步驟6),計算黑色水化區域的大小作為局部光譜特征:
SL=SL1,SL2,…,SL199,SL200.
3.3基于局部光譜特征的銅粗選“病態”工況識別
銅粗選過程是整個銅浮選流程的第1步,浮選性能好壞直接影響后續流程的操作和產品質量,通常用粗選首槽泡沫品位作為衡量粗選過程浮選性能的指標.將本文所提方法應用于泡沫圖像樣本,提取局部光譜特征,畫出局部光譜特征與首槽泡沫品位的散點圖,如圖7所示.局部區域面積為15~28 cm2時對應的泡沫品位較高.當局部區域面積過大時(局部局域面積大于28 cm2),泡沫水化現象嚴重,泡沫上附著的金屬礦粒少,泡沫品位低;而局部區域面積過小時(局部區域面積小于15 cm2),泡沫坍塌現象嚴重,泡沫上附著的金屬礦粒掉入礦漿,泡沫品位也會降低.因此,由圖7可知,便可以得到銅粗選首槽“病態”工況所對應的局部光譜特征閾值區間,識別出粗選過程的“病態”工況.
4工業應用
為了驗證本文所提的方法,基于Visual C++和Matlab7.0開發了如圖4所示的銅浮選泡沫圖像監控系統應用于國內某銅浮選廠粗選流程.該系統能夠提供浮選泡沫視覺圖像和對應的圖像視覺特征曲線,實現了銅浮選粗選首槽病態工況的識別,并將其總結為專家控制規則,現場工作人員能及時了解工況,根據工況的變化調整操作以穩定和提高浮選品位及回收率.2012年1-5月,所開發系統在工業現場連續試運行5個月,分析對比入礦條件基本相同,藥劑制度相同情況下的2010年回收率數據,如圖8所示,系統投入運行前銅回收率平均值為86.48%,標準差0.846 759;投入運行后銅回收率平均值為87.23% ,標準差為0.825 57.在一定程度上,對于穩定和提高銅回收率指標有幫助.
5結論
銅粗選工況識別是銅浮選全流程監控的關鍵.本文描述了銅浮選粗選過程,分析了影響粗選過程的主要因素和粗選首槽泡沫圖像黑色水化區域形成機理,提出以黑色水化區域面積作為銅浮選粗選過程病態工況識別的局部圖像特征,并針對這一特征大小、形狀無規則性,提出一種基于MPCA的局部光譜特征提取新方法.該方法無需考慮原始圖像中的像素空間位置,能很好地捕獲原始圖像的局部光譜特征.所提取的特征與浮選泡沫品位有很強的相關性,可用于銅浮選粗選過程病態工況識別.但是入礦類型的改變會引起粗選工況區間的漂移,用單一的圖像特征會造成病態工況區間的誤識別.這將是我們下一步要解決的問題.
參考文獻
[1]桂衛華.礦物浮選泡沫圖像處理與過程監測技術[M]. 長沙:中南大學出版社,2013:11-17.
GUI Weihua. Mineral flotation froth image processing and process monitoring technology[M].Changsha: Central South University Press, 2013.(In Chinese)
[2]桂衛華,陽春華,盧明,等.基于機器視覺的礦物浮選過程監控技術研究進展[J].自動化學報,2013, 39(11):1879-1887.
GUI Weihua, YANG Chunhua, LU Ming, et al. Machinevisionbased online measuring and controlling technologies for mineral flotation—a review[J]. Acta Automatica Sinica, 2013, 39(11):1879-1887. (In Chinese)
[3]CIT IR C, AKTAS Z, BER BERR. Off line image analysis for froth flotation of coal[J]. Computers & Chemical Engineering, 2004,28(60):625-632.
[4]HATONEN J. Image analysis in mineral flotation[D]. Helsinki, Finland: Helsinki University of Technology, 1999.
[5]ALDRICH C, MAIIAIS C, SHEAN B J, et al. Online monitoring and control of froth flotation systems with machine vision:a review[J]. International Journal of Mineral Processing, 2010,96(4):1-13.
[6]XU C H, GUI W H, YANG C H. Flotation process fault detection using output PDF of bubble size distribution[J]. Minerals Engineering, 2012,26:5-12.
[7]BONIFAZI G, SERRANTI S,VOLPE F,et al.Characterization of flotation froth colour and structure by machine vision[J]. Computers & Geosciences, 2001,27(9):1111-1117.
[8]BONIFAZI G,SERRANTI S,VOLPE F,et al.Flotation froth characterization by closed domain (bubbles) color analysis[C]//4th Int Conf on Quality Control by Artificial Vision,November 10-12, Takamatsu, Japan, 1998:131-137.
[9]BARTOLACCI G,PELLETIER R,TESSIER J.Application of numerical image analysis to process diagnosis and physical parameter measurement in mineral processes —part 1: flotation control based on froth textural characteristic[J]. Minerals Engineering, 2006,19(6/8):734-747.
[10]KAARTINEN J. Data acquisition and analysis system for mineral flotation[D].Finland:Control Engineering Laboratory, Helsinki University of Technology, 2001.
[11]KAARTINEN J, HATONEN J, MIETTUNEN J, et al. Image analysis based control of zinc flotation a multicamera approach[C]//Preprints of the Seventh International Conference on Control, Automation, Robotics and Vision(ICARV 2002), Singapore,2002.
[12]GARCAMUOZ S,GIERER D S.Coating assessment for colored immediate release tablets using multivariate image analysis[J].International Journal of Pharmaceutics,2010,395:104-113.
[13]ESBENSEN K,GELADI P.Strategy of multivariate image analysis[J].Chemometrics and Intelligent Laboratory Systems,1989,7(1/2):67-86.
[14]PARTSMONTALBAN J M,DE JUAN A,FERRER A. Multivariate image analysis: a review with applications[J]. Chemometrics and Intelligent Laboratory Systems,2011,107(1):1-23.
[15]GELADI P,ISAKSSON H,LINDQVIST L,et al.Principal component analysis of multivariate images[J].Chemometrics and Intelligent Laboratory Systems,1989,5(3):209-220.
[16]YU H,MACGREGOR J F.Multivariate image analysis and regression for prediction of coating and distribution in the production of snack foods[J].Chemometrics and Intelligent Laboratory Systems,2003,67(2):125-144.
[17]LIU J J,MACGREGOR J F.Estimation and monitoring of product aesthetics: application to manufacturing of “engineered stone” countertops[J].Machine Vision and Applications, 2006,16:374-383.
[18]許悟生,謝柯夫.基于像素灰度關聯的邊緣檢測[J].湖南師范大學自然科學學報,2012,35(4):26-30.
XU Wusheng, XIE Kefu. Edge detection based on pixel gray correlation[J].Journal of Natural Science of Hunan Normal University,2012,35(4):26-30.(In Chinese)
[3]CIT IR C, AKTAS Z, BER BERR. Off line image analysis for froth flotation of coal[J]. Computers & Chemical Engineering, 2004,28(60):625-632.
[4]HATONEN J. Image analysis in mineral flotation[D]. Helsinki, Finland: Helsinki University of Technology, 1999.
[5]ALDRICH C, MAIIAIS C, SHEAN B J, et al. Online monitoring and control of froth flotation systems with machine vision:a review[J]. International Journal of Mineral Processing, 2010,96(4):1-13.
[6]XU C H, GUI W H, YANG C H. Flotation process fault detection using output PDF of bubble size distribution[J]. Minerals Engineering, 2012,26:5-12.
[7]BONIFAZI G, SERRANTI S,VOLPE F,et al.Characterization of flotation froth colour and structure by machine vision[J]. Computers & Geosciences, 2001,27(9):1111-1117.
[8]BONIFAZI G,SERRANTI S,VOLPE F,et al.Flotation froth characterization by closed domain (bubbles) color analysis[C]//4th Int Conf on Quality Control by Artificial Vision,November 10-12, Takamatsu, Japan, 1998:131-137.
[9]BARTOLACCI G,PELLETIER R,TESSIER J.Application of numerical image analysis to process diagnosis and physical parameter measurement in mineral processes —part 1: flotation control based on froth textural characteristic[J]. Minerals Engineering, 2006,19(6/8):734-747.
[10]KAARTINEN J. Data acquisition and analysis system for mineral flotation[D].Finland:Control Engineering Laboratory, Helsinki University of Technology, 2001.
[11]KAARTINEN J, HATONEN J, MIETTUNEN J, et al. Image analysis based control of zinc flotation a multicamera approach[C]//Preprints of the Seventh International Conference on Control, Automation, Robotics and Vision(ICARV 2002), Singapore,2002.
[12]GARCAMUOZ S,GIERER D S.Coating assessment for colored immediate release tablets using multivariate image analysis[J].International Journal of Pharmaceutics,2010,395:104-113.
[13]ESBENSEN K,GELADI P.Strategy of multivariate image analysis[J].Chemometrics and Intelligent Laboratory Systems,1989,7(1/2):67-86.
[14]PARTSMONTALBAN J M,DE JUAN A,FERRER A. Multivariate image analysis: a review with applications[J]. Chemometrics and Intelligent Laboratory Systems,2011,107(1):1-23.
[15]GELADI P,ISAKSSON H,LINDQVIST L,et al.Principal component analysis of multivariate images[J].Chemometrics and Intelligent Laboratory Systems,1989,5(3):209-220.
[16]YU H,MACGREGOR J F.Multivariate image analysis and regression for prediction of coating and distribution in the production of snack foods[J].Chemometrics and Intelligent Laboratory Systems,2003,67(2):125-144.
[17]LIU J J,MACGREGOR J F.Estimation and monitoring of product aesthetics: application to manufacturing of “engineered stone” countertops[J].Machine Vision and Applications, 2006,16:374-383.
[18]許悟生,謝柯夫.基于像素灰度關聯的邊緣檢測[J].湖南師范大學自然科學學報,2012,35(4):26-30.
XU Wusheng, XIE Kefu. Edge detection based on pixel gray correlation[J].Journal of Natural Science of Hunan Normal University,2012,35(4):26-30.(In Chinese)
[3]CIT IR C, AKTAS Z, BER BERR. Off line image analysis for froth flotation of coal[J]. Computers & Chemical Engineering, 2004,28(60):625-632.
[4]HATONEN J. Image analysis in mineral flotation[D]. Helsinki, Finland: Helsinki University of Technology, 1999.
[5]ALDRICH C, MAIIAIS C, SHEAN B J, et al. Online monitoring and control of froth flotation systems with machine vision:a review[J]. International Journal of Mineral Processing, 2010,96(4):1-13.
[6]XU C H, GUI W H, YANG C H. Flotation process fault detection using output PDF of bubble size distribution[J]. Minerals Engineering, 2012,26:5-12.
[7]BONIFAZI G, SERRANTI S,VOLPE F,et al.Characterization of flotation froth colour and structure by machine vision[J]. Computers & Geosciences, 2001,27(9):1111-1117.
[8]BONIFAZI G,SERRANTI S,VOLPE F,et al.Flotation froth characterization by closed domain (bubbles) color analysis[C]//4th Int Conf on Quality Control by Artificial Vision,November 10-12, Takamatsu, Japan, 1998:131-137.
[9]BARTOLACCI G,PELLETIER R,TESSIER J.Application of numerical image analysis to process diagnosis and physical parameter measurement in mineral processes —part 1: flotation control based on froth textural characteristic[J]. Minerals Engineering, 2006,19(6/8):734-747.
[10]KAARTINEN J. Data acquisition and analysis system for mineral flotation[D].Finland:Control Engineering Laboratory, Helsinki University of Technology, 2001.
[11]KAARTINEN J, HATONEN J, MIETTUNEN J, et al. Image analysis based control of zinc flotation a multicamera approach[C]//Preprints of the Seventh International Conference on Control, Automation, Robotics and Vision(ICARV 2002), Singapore,2002.
[12]GARCAMUOZ S,GIERER D S.Coating assessment for colored immediate release tablets using multivariate image analysis[J].International Journal of Pharmaceutics,2010,395:104-113.
[13]ESBENSEN K,GELADI P.Strategy of multivariate image analysis[J].Chemometrics and Intelligent Laboratory Systems,1989,7(1/2):67-86.
[14]PARTSMONTALBAN J M,DE JUAN A,FERRER A. Multivariate image analysis: a review with applications[J]. Chemometrics and Intelligent Laboratory Systems,2011,107(1):1-23.
[15]GELADI P,ISAKSSON H,LINDQVIST L,et al.Principal component analysis of multivariate images[J].Chemometrics and Intelligent Laboratory Systems,1989,5(3):209-220.
[16]YU H,MACGREGOR J F.Multivariate image analysis and regression for prediction of coating and distribution in the production of snack foods[J].Chemometrics and Intelligent Laboratory Systems,2003,67(2):125-144.
[17]LIU J J,MACGREGOR J F.Estimation and monitoring of product aesthetics: application to manufacturing of “engineered stone” countertops[J].Machine Vision and Applications, 2006,16:374-383.
[18]許悟生,謝柯夫.基于像素灰度關聯的邊緣檢測[J].湖南師范大學自然科學學報,2012,35(4):26-30.
XU Wusheng, XIE Kefu. Edge detection based on pixel gray correlation[J].Journal of Natural Science of Hunan Normal University,2012,35(4):26-30.(In Chinese)