曹婷+代惠萍
摘要:以紫花苜蓿品種敖漢、金皇后、三得利和隆西為材料,采用土培試驗方法,研究了Zn2+脅迫對4種紫花苜蓿葉片酶促防御系統的保護酶SOD、CAT 和APX活性和H2O2、MDA含量及生物量的影響。結果表明,隨著Zn2+脅迫程度的加劇,4種紫花苜蓿葉片H2O2、MDA含量均呈增加趨勢,這說明它們分別遭受了Zn2+所造成的氧化脅迫,且Zn2+脅迫程度越大其遭受的氧化脅迫也越大。不同濃度Zn2+脅迫下,4種苜蓿葉片抗氧化酶活性與生物量積累相比較,敖漢的SOD、CAT、APX活性和生物量含量顯著高于其他3種苜蓿,且差異顯著。綜合評價表明,敖漢的抗氧化能力最強,其次為金皇后和三得利,隆西的抗氧化能力最差。
關鍵詞:紫花苜蓿;Zn2+脅迫;生理特性
中圖分類號:X171.5文獻標識碼:A文章編號:0439-8114(2014)10-2365-03
Biochemical Characteristics of Different Alfalfa Leaves under Zinc Stress
CHAO Ting,DAI Hui-ping
(College of Biological Science & Engineering,Shaanxi University of Technology,Hanzhong 723000,Shaanxi,China)
Abstract: Effects of Zn2+ stress on four alfalfa(Medikageo staival L.) including Aohan,Golden Empress,Sanditi,and Longxi were studied with soil culture. The indexes including the protective enzymes activities of SOD,CAT,APX,the content ofperoxidation and MDA,and biomass contents were determined. The results showed that the MDA and H2O2 contents in the leaves of four alfalfa species increased with the increasing levels of Zn2+ stress. All alfalfa suffered oxidative damage under different levels of Zn2+ stress. The oxidative damage became more serious with increasing levels ofZn2+ stress. Under different levels of Zn2+ stress,Aohan had the highest activities of SOD,CAT,APX and biomass contents, significantly different with other species.The order of antioxidant capacity of the four alfalfa species was Aohan,Golden Empress,Sanditi and Longxi.
Key words: alfalfa(Medikageo staival L.); zinc stress; biochemical characteristics
基金項目:陜西省自然科學基金項目(2013JQ3015);陜西理工學院人才啟動項目(SLGQD13-16);陜西省重點學科專項建設經費資助
隨著礦產資源的大量開發利用,各種化學產品、農藥、化肥及城市污泥、污水在農業生產中的廣泛使用,重金屬對土壤的污染越來越嚴重[1-5]。鋅(Zn2+)作為植物生長的必需元素,在植物體內的生化過程中相當活躍,但作為重金屬元素加之在植物代謝過程中易于轉移,當其過量時會對植物的正常生長造成傷害[6-9]。前人研究表明,植物在重金屬脅迫下產生超氧陰離子自由基、羥自由基等活性氧[10,11],能引起細胞脂質過氧化,破壞光合系統和加速植物衰老[12]。而植物體內存在酶促與非酶促兩類活性氧清除系統,消除活性氧自由基,降低其對植物的傷害[13]。關于重金屬鋅脅迫下紫花苜蓿葉片保護酶活性及膜脂過氧化的研究還鮮見報道。本試驗以鋅為脅迫因子,以紫花苜蓿(Medikago sativa L.)為材料,研究鋅脅迫對4種紫花苜蓿葉片保護酶活性及膜脂過氧化的影響,為培育抗Zn2+苜蓿新品種探索新的途徑。
1材料與方法
1.1材料
選用陜西主栽苜蓿品種AH(敖漢)、GE(金皇后)、SDI(三得利)和LX(隆西) 4品種。
1.2試驗設計
試驗于2013年3月在陜西理工學院生工學院植物學實驗室進行。選飽滿、無病蟲害的苜蓿種子,用0.1%的HgCl2消毒10 min,以蛭石和草炭為栽培基質,用Hoagland作為營養液在陽光充足的不透明盆內培養。苜蓿幼苗生長2個月后,選生長一致的幼苗,向盆內加入ZnSO4,使Zn2+濃度分別達到300、600和900 μmol/L,設對照組(CK)不作處理。每個處理設置6次重復,pH調至6.5。在脅迫23 d時進行收獲,每個處理收獲6盆。
1.2.1 測定項目的方法H2O2含量、MDA含量、抗氧化酶SOD活性、CAT活性和APX活性均參照Dai等[2]的方法測定。
1.2.2生物量的測定分別在脅迫23 d后進行收獲,每個處理收獲6株,將每株葉片分開,105 ℃殺青后,70 ℃烘干,稱量干重。
1.3數據分析
所有數據均采用平均值計算,用統計軟件SPSS 12進行統計分析。One-Way ANOVA方差分析比較不同處理間各項指標的差異,通過LSD法進行差異顯著性(P<0.05)分析。
2結果與分析
2.1 Zn2+脅迫對4種紫花苜蓿葉片生物量積累的影響
由圖1表明,不同濃度Zn2+脅迫下敖漢苜蓿葉片的生物量顯著高于對照(P<0.05)。結果表明,不同濃度Zn2+脅迫下可促進敖漢苜蓿葉片生物量積累,而金皇后、三得利和隆西葉片生物量呈降低的趨勢。
2.2Zn2+脅迫對4種紫花苜蓿H2O2和MDA含量的影響
由圖2可知,隨著Zn2+脅迫的加劇,4種苜蓿葉片的H2O2和MDA含量分別呈增加趨勢。在不同Zn2+脅迫條件下,敖漢葉片的H2O2和MDA含量均最低,隆西葉片的H2O2和MDA含量均最高,且隆西葉片的H2O2和MDA含量分別顯著高于其他3種苜蓿(P<0.05),金皇后和三得利葉片的H2O2和MDA含量顯著高于敖漢(P<0.05)。研究表明,Zn2+脅迫可以對4種苜蓿造成不同程度的氧化脅迫,其中敖漢所遭受的氧化脅迫程度最低,隆西所遭受的氧化脅迫程度最高。
2.2Zn2+脅迫對4種紫花苜蓿SOD、CAT和APX活性的影響
由圖3a可知,隨著Zn2+脅迫程度的加劇,4種紫花苜蓿葉片SOD活性均呈先增加后降低的變化趨勢,在300 μmol/L Zn2+和600 μmol/L Zn2+條件下,敖漢葉片SOD活性分別比對照增加23.8%和57.4%,金皇后葉片SOD活性分別比對照增加5.5%和22.0%,三得利葉片SOD活性分別比對照增加16.1%和6.7%,隆西葉片SOD活性分別比對照增加14.9%和0.2%;在900 μmol/L Zn2+條件下,敖漢的SOD活性顯著高于其他3種苜蓿(P<0.05)。
由圖3b表明,隨著Zn2+脅迫程度的加劇,4種紫花苜蓿葉片CAT活性呈先增加后降低的變化趨勢,在300 μmol/L Zn2+條件下,4種紫花苜蓿葉片的CAT活性顯著高于對照,在600 μmol/L Zn2+條件下,敖漢葉片的CAT活性比對照增加了71.2%,金皇后葉片的CAT活性分別比對照增加了36.7%,三得利葉片的CAT活性比對照增加了5.3%,但隆西葉片CAT活性比對照降低了17.7%;在900 μmol/L Zn2+條件下,敖漢和金皇后的CAT活性顯著高于對照47.1%和6.1%(P<0.05),但三得利和隆西分別低于對照(P<0.05)。
由圖3c可知,敖漢具有較高的APX活性,其次為金皇后和三得利,隆西APX活性最低。隨著Zn2+脅迫的加劇,在300 μmol/L和600 μmol/L Zn2+條件下,4種紫花苜蓿葉片APX活性分別高于對照;在900 μmol/L Zn2+條件下,敖漢的APX活性比對照增加了24.7%,而金皇后、三得利和隆西葉片的APX活性分別比對照降低了4.3%、8.2%和9.3%。
3小結與討論
在正常情況下,植物細胞內自由基的產生和清除處于動態平衡狀態,自由基水平低,不會傷害細胞。但在逆境條件下,平衡被打破,從而使活性氧產生加劇而過剩,活性氧不僅會引發或加劇膜脂過氧化作用,而且還會使蛋白質脫氫而產生蛋白質自由基,使蛋白質發生鏈式聚合反應,從而使細胞膜系統損傷[14-18]。因此,H2O2和MDA含量是衡量氧化脅迫程度的重要指標[2]。在本研究中,敖漢、金皇后、三得利和隆西在Zn2+脅迫條件下其葉片H2O2和MDA含量均增加,這說明Zn2+脅迫均導致4種紫花苜蓿遭受了氧化脅迫,且隨著Zn2+脅迫程度的加劇,4種紫花苜蓿遭受的氧化脅迫均加重。在900 μmol/L Zn2+水平下,隆西葉片的H2O2和MDA含量均顯著高于其他3種苜蓿,說明隆西在脅迫條件下比其他苜蓿遭受了更為嚴重的氧化脅迫傷害,敖漢葉片的H2O2和MDA含量均顯著低于其他3種苜蓿,這與其具有較強的抗氧化能力有關,同時,它們的抗氧化特性存在一定的共性,在900 μmol/L Zn2+脅迫下,4種紫花苜蓿均可以通過增強抗氧化酶SOD、CAT和APX活性來抵御氧化脅迫的傷害。4種紫花苜蓿抗氧化能力的綜合評價結果表明,敖漢的抗氧化能力最強,其次為金皇后和三得利的,隆西的抗氧化能力最差。因此,這對于評價敖漢苜蓿的抗鋅品種的選育具有一定的理論和實踐意義。
參考文獻:
[1] DAI H P ,WEI Y ,YANG T X,et al.Influence of cadmium stress on chlorophyll fluorescence characteristics in Populus×canescens[J]. Journal of Food,Agriculture & Environment,2012, 10(2):1281-1283.
[2] DAI H P,SHAN C J,LU C,et al.Response of antioxidant enzymes in populus × canescens under cadmium stress[J].Pakistan Journal of Botany,2012,44(6): 1943-1949.
[3] DAI H P,SHAN C J,JIA G L,et al.Cadmium detoxification in Populus × canescens[J]. Turkish Journal of Botany,2013,37: 950-955.
[4] DAI H P,SHAN C J,JIA G L,et al. Responses to cadmium tolerance, accumulation and translocation in Populus × canescens[J]. Water,Air,& Soil Pollution,2013,224:1504.
[5] DAI H P,WEI A Z,YANG T X,et al.Cadmium uptake,localization and detoxification in Populus × canescens[J]. Journal of Food,Agriculture & Environment,2013,11(1):875-877.
[6] CHANG J,YOON I,KIM K.Heavy metal and arsenic accumulating fern species as potential ecological indicators in as-contaminated abandoned mines[J]. Ecological Indicators,2009,9(6):1275-1279.
[7] EMILY H.Zinc deficiency,DNA damage and cancer risk[J].Journal of Nutritional Biochemistry,2004,15:572-578.
[8] 楊紅飛,王友保,李建龍.銅、鋅污染對水稻土中油菜(Brassica chinensis L.)生長的影響及累積效應研究[J].生態環境學報,2011,20(10):1470-1477.
[9] CAKMAK Ismail.Possible roles of zinc in protecting plant cells from damage by reactive oxygen species[J]. New Phytologist,2000,146:185-205.
[10] YEON-OK K,MASAKAZU H,TORU K.Response of an active oxygen scavenging system to cadmium in cadmium-tolerant cell of carrot[J]. Plant Biotechology,2001,18:39-43.
[11] KAVITA S,TITAMBHARA C,KUMAR,et al.Effect of cadmium on lipid peroxidation,superoxide anion generation activities or antioxidant enzymes in growing rice seedings[J]. Plant Science,2001,161(6):1135-1141.
[12] LI X N,YANG Y L,JIA L Y.Zinc-induced antioxidant enzyme response and proline metabolism in roots and leaves of wheat plants[J]. Ecotoxicology and Environmental Safety,2013,89(1):150-157.
[13] MARIA A I,Abrizio P,LUCIA F.Antioxidant response to cadmium in Phragmites australis plants[J]. Plant Physiology Biochemistry,2002,40(11):977-982
[14] ORACZ K,BAILLY C,GNIAZDOWSKA A,et al. Indution of oxidative stress by sunflower phytotoxins in germinating mustard seeds[J].Journal of Chemical Ecology,2007,33:251-264.
[15] LIN C W,LIN C Y,CHANG C C ,et al. Early signalling pathways in rice roots under vanadate stress [J].Plant Physiology and Biochemistry 2009,47(5):369-376.
[16] PANDEY V,DIXIT V, SHYAM R. Chromium(VI) induced changes in growth and root plasma membrane redox activities in pea plants[J].Protoplasma,2009,235(1-4):49-55.
[17] AVU O LU K,ERGENE A,YALCIN E,et al. Cytotoxic effects of lead and mercury ions on root tip cells of Cicer arietinum L.[J]. Fresenius Environmental Bulletin,2009,18(9):1654-1661.
[18] TIWARI KK,DWIVEDI S,SINGH NK,et al. Chromium (VI) induced phytotoxicity and oxidative stress in pea (Pisum sativum L.): biochemical changes and translocation of essential nutrients[J]. Journal of Environmental Biology,2009,30(3):389-394.
[5] DAI H P,WEI A Z,YANG T X,et al.Cadmium uptake,localization and detoxification in Populus × canescens[J]. Journal of Food,Agriculture & Environment,2013,11(1):875-877.
[6] CHANG J,YOON I,KIM K.Heavy metal and arsenic accumulating fern species as potential ecological indicators in as-contaminated abandoned mines[J]. Ecological Indicators,2009,9(6):1275-1279.
[7] EMILY H.Zinc deficiency,DNA damage and cancer risk[J].Journal of Nutritional Biochemistry,2004,15:572-578.
[8] 楊紅飛,王友保,李建龍.銅、鋅污染對水稻土中油菜(Brassica chinensis L.)生長的影響及累積效應研究[J].生態環境學報,2011,20(10):1470-1477.
[9] CAKMAK Ismail.Possible roles of zinc in protecting plant cells from damage by reactive oxygen species[J]. New Phytologist,2000,146:185-205.
[10] YEON-OK K,MASAKAZU H,TORU K.Response of an active oxygen scavenging system to cadmium in cadmium-tolerant cell of carrot[J]. Plant Biotechology,2001,18:39-43.
[11] KAVITA S,TITAMBHARA C,KUMAR,et al.Effect of cadmium on lipid peroxidation,superoxide anion generation activities or antioxidant enzymes in growing rice seedings[J]. Plant Science,2001,161(6):1135-1141.
[12] LI X N,YANG Y L,JIA L Y.Zinc-induced antioxidant enzyme response and proline metabolism in roots and leaves of wheat plants[J]. Ecotoxicology and Environmental Safety,2013,89(1):150-157.
[13] MARIA A I,Abrizio P,LUCIA F.Antioxidant response to cadmium in Phragmites australis plants[J]. Plant Physiology Biochemistry,2002,40(11):977-982
[14] ORACZ K,BAILLY C,GNIAZDOWSKA A,et al. Indution of oxidative stress by sunflower phytotoxins in germinating mustard seeds[J].Journal of Chemical Ecology,2007,33:251-264.
[15] LIN C W,LIN C Y,CHANG C C ,et al. Early signalling pathways in rice roots under vanadate stress [J].Plant Physiology and Biochemistry 2009,47(5):369-376.
[16] PANDEY V,DIXIT V, SHYAM R. Chromium(VI) induced changes in growth and root plasma membrane redox activities in pea plants[J].Protoplasma,2009,235(1-4):49-55.
[17] AVU O LU K,ERGENE A,YALCIN E,et al. Cytotoxic effects of lead and mercury ions on root tip cells of Cicer arietinum L.[J]. Fresenius Environmental Bulletin,2009,18(9):1654-1661.
[18] TIWARI KK,DWIVEDI S,SINGH NK,et al. Chromium (VI) induced phytotoxicity and oxidative stress in pea (Pisum sativum L.): biochemical changes and translocation of essential nutrients[J]. Journal of Environmental Biology,2009,30(3):389-394.
[5] DAI H P,WEI A Z,YANG T X,et al.Cadmium uptake,localization and detoxification in Populus × canescens[J]. Journal of Food,Agriculture & Environment,2013,11(1):875-877.
[6] CHANG J,YOON I,KIM K.Heavy metal and arsenic accumulating fern species as potential ecological indicators in as-contaminated abandoned mines[J]. Ecological Indicators,2009,9(6):1275-1279.
[7] EMILY H.Zinc deficiency,DNA damage and cancer risk[J].Journal of Nutritional Biochemistry,2004,15:572-578.
[8] 楊紅飛,王友保,李建龍.銅、鋅污染對水稻土中油菜(Brassica chinensis L.)生長的影響及累積效應研究[J].生態環境學報,2011,20(10):1470-1477.
[9] CAKMAK Ismail.Possible roles of zinc in protecting plant cells from damage by reactive oxygen species[J]. New Phytologist,2000,146:185-205.
[10] YEON-OK K,MASAKAZU H,TORU K.Response of an active oxygen scavenging system to cadmium in cadmium-tolerant cell of carrot[J]. Plant Biotechology,2001,18:39-43.
[11] KAVITA S,TITAMBHARA C,KUMAR,et al.Effect of cadmium on lipid peroxidation,superoxide anion generation activities or antioxidant enzymes in growing rice seedings[J]. Plant Science,2001,161(6):1135-1141.
[12] LI X N,YANG Y L,JIA L Y.Zinc-induced antioxidant enzyme response and proline metabolism in roots and leaves of wheat plants[J]. Ecotoxicology and Environmental Safety,2013,89(1):150-157.
[13] MARIA A I,Abrizio P,LUCIA F.Antioxidant response to cadmium in Phragmites australis plants[J]. Plant Physiology Biochemistry,2002,40(11):977-982
[14] ORACZ K,BAILLY C,GNIAZDOWSKA A,et al. Indution of oxidative stress by sunflower phytotoxins in germinating mustard seeds[J].Journal of Chemical Ecology,2007,33:251-264.
[15] LIN C W,LIN C Y,CHANG C C ,et al. Early signalling pathways in rice roots under vanadate stress [J].Plant Physiology and Biochemistry 2009,47(5):369-376.
[16] PANDEY V,DIXIT V, SHYAM R. Chromium(VI) induced changes in growth and root plasma membrane redox activities in pea plants[J].Protoplasma,2009,235(1-4):49-55.
[17] AVU O LU K,ERGENE A,YALCIN E,et al. Cytotoxic effects of lead and mercury ions on root tip cells of Cicer arietinum L.[J]. Fresenius Environmental Bulletin,2009,18(9):1654-1661.
[18] TIWARI KK,DWIVEDI S,SINGH NK,et al. Chromium (VI) induced phytotoxicity and oxidative stress in pea (Pisum sativum L.): biochemical changes and translocation of essential nutrients[J]. Journal of Environmental Biology,2009,30(3):389-394.