999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Disjoint Paths and k-wide Diameter of Circulants with Degree 4?

2014-11-02 08:56:08LIUShutingMENGJixiang

LIU Shu-ting,MENG Ji-xiang

(College of Mathematics and System Sciences,Xinjiang University,Urumqi Xinjiang 830046,China)

Abstract: In this paper,we give a family of four internally disjoint paths between any two vertices of the circulant graph with degree 4 by constructing.Moreover,one upper bound of 4-wide diameter of the kind of the circulant graph is also given.

Key words:circulant graph,disjoint paths,k-wide distance,k-wide diameter

0 Introduction and fundamental Definitions

For notation not defined here,see[1]for references.Firstly,we introduce some notions of the circulant graph and give some properties proved in other articles.

Let Zn={0,1,…,n ? 1},S ? Zn? {0}.?S=S(mod n),namely there exist d1,d2,…,dk,such that S={d1,d2,…,dk,n?d1,n?d2,…,n?dk},where d1,d2,…,dkare called spanning elements.In the following,we assume that the points of a graph are labeled clockwise by 0,1,2,…,n?1,(corresponding to 0,?n+1,…,?2,?1 respectively)and we refer to point i instead of saying the point labeled i.

Definition 1The graph G with order n is called circulant graph if it satisfies:

1)V(G)=Zn;

2)E(G)={ij|j?i∈S},where the operation takes module n.

The circulant graph G is denoted by Cn(d1,d2,…,dk)or brie fly Cn(di),where 0

Definition 2Given a graph G,for x,y∈V(G),x,y,let Pk(x,y)be a family of k internally disjoint paths between x and y,i.e.

where|p1|≤ |p2|≤…≤ |pk|and|pi|denotes length of the path pi,i=1,2,…,k.The k-wide distance dk(x,y)between vertices x and y is the minimum|pk|among all Pk(x,y)and k-wide diameter dk(G)of G is defined as the maximum k-wide distance dk(x,y)over all pairs(x,y)of vertices of G.

If a graph G is k-connected,according to Menger’s Theorem,any pair of two distinct vertices x and y has a Pk(x,y).This means that dk(G)exists if G is k-connected.

Proposition 1Znis a residue class ring mod n.if a,b∈Znand 0

Proposition 2[2]d1(G)≤ d2(G)≤…≤ dk(G)for any network G of connectivity κ.

Theorem 1[3]Cn(d1,d2,…,dk)is connected if and only if gcd(d1,d2,…,dk,n)=1.

Theorem 2[4]If Cn(d1,d2,…,dk)is a connected circulant of degree 4 or 6,then κ=δ.

Theorem 3[5]If gcd(n,a)=1 or gcd(n,b)=1,then there exists an integer k satisfying Cn(1,k)?Cn(a,b).

1 Internally disjoint paths

In general,we can show that a circulant is connected by identifying the existence of a path from 0 to t for each vertex t.That is,we need a combination of elements of S that sum to t:t(mod n),where(αm)and[dm]respectively denote step number and step factor of the 0t-path.

Let G=Cn(1,d)(n≥6)be a circulant graph,then one of all the families of 4 internally disjoint paths from 0 to t for each vertex t,denoted by P4(0,t),can be constructed under the following conditions which the lemmas should satisfy.Firstly,we give the conditions:

(1)Give afixed pair of integers(n,d)and let them satisfy n=Kd+n0,where 1K>2.

(2)?0

Lemma 1Let G=Cn(1,d)(n≥6)be a circulant graph,then the connectivity of G is 4.

Proof By Theorem 1,we knowthatG is connected with degree 4,By Theorem 2,we obtain that the connectivity of G is 4.

Lemma 2If k,0 and i,0,then a P4(0,t)can be constructed as follows:

t(1):(k)[d]+(i)[1]=t;t(2):(i)[1]+(k)[d]=t;

t(3):(K?k)[?d]+(n0?i)[?1]=t?n,t(4):(n0?i)[?1]+(K?k)[?d]=t?n,where i

t(3):(K?k?1)[?d]+(d?i+n0)[?1]=t?n,t(4):(d?i+n0)[?1]+(K?k?1)[?d]=t?n,where i>n0;

t(3):(K?k)[?d]=t?n,t(4):(d?1)[?1]+(K?k?1)[?d]+(1)[?1]=t?n,where i=n0.

In the expressions,note that t(l)denotes the l-th disjoint path from 0 to t,where l={1,2,3,4}.Elements in the parentheses represent step numbers.Elements,such as 1,?1,d,?d,in the brackets represent step factors of the path.For example,t(l)denotes the path(d,2d,…,kd,kd+1,…,kd+i).the others have the same Definition.

Lemma 3If k=0 and i,0,then a P4(0,t)can be constructed as follows:

t(1):(i)[1]=t;t(2):(1)[d]+(d?i)[?1]=t;t(3):(d?i)[?1]+(1)[d]=t;

t(4):(K?2)[?d]+(n0?i)[?1]+(2)[?d]=t?n,where n0≥i>0;

t(4):(K?2)[?d]+(i?n0)[?1]+(2)[?d]=t?n,where i>n0>0;

t(4):(K?2)[?d]+(d?i)[?1]+(1)[?d]=t?n,where i>n0=0.

Lemma 4If i=0 and k,0,then a P4(0,t)can be constructed as follows:

t(1):(k)[d]=t;t(2):(1)[1]+(k)[d]+(1)[?1]=t;

t(3):(1)[?1]+(k)[d]+(1)[1]=t;

t(4):(K?k?1)[?d]+(n0)[?1]+(1)[?d]=t?n,where n0>i=0;

t(4):(K?k)[?d]=t?n,where n0=i=0.

The method to prove any two paths are internally disjoint in the different cases are similar.So we will only prove some cases without repeating the methods to prove other cases here.

ProofIn order to prove that two arbitrary paths are internally disjoint,we only need to prove that,(mod n)between arbitrary l-th path and m-th path,for arbitrary variables ξ and η,where m,l∈{1,2,3,4}.Wheredenote the sum to η terms of t(l).The sum to η terms about disjoint paths are defined as

And if i<ξ≤i+k,we obtain

because 0

By the monotone increasing properties of

2 k-wide Diameter

Our main theorems are as follows.

Theorem 4Let G=Cn(1,d)(n≥6,d≥2)be a circulant graph,then

where K=bn/dc>2.

ProofIn order to obtain one upper bound of d(0,t)=min{|pi|:for all the paths from 0 to t},we can calculate the minimum sum of step numbers of every path from 0 to t through its corresponding four disjoint paths constructed above.

Case 1k,0,i,0,

If i

If i>n0,then d(0,t)≤min{k+i,K?k?1+d?i+n0}≤(k+i+K?k?1+d?i+n0)/2=(K?1+d+n0)/2;

If i=n0,then d(0,t)≤min{k+i,K?k,K?k+d?1}=min{k+n0,K?k}≤(k+n0+K?k)/2=(K+n0)/2.

Case 2k=0,i,0,

If n0≥i>0,then d(0,t)≤min{i,d?i+1,K+n0?i}≤(i+d?i+1)/2=(d+1)/2.;

If i>n0>0,then d(0,t)≤min{i,d?i+1,K+i?n0}≤(i+d?i+1)/2=(d+1)/2.;

If i>n0=0,then d(0,t)≤min{i,d?i+1,K+d?i?1}≤(i+d?i+1)/2=(d+1)/2.

Case 3k,0,i=0,

If n0>i=0,then d(0,t)≤min{k,k+2,K+n0?1?k}=min{k,K+n0?k}≤(K+n0)/2;

If n0=i=0,then d(0,t)≤min{k,k+2,K?k}=min{k,K?k}≤K/2;

In the above cases,we obtain that d(G)=max{d(0,t):t∈V(G)}≤max{(K+n0)/2,(K?1+d+n0)/2,(d+1)/2,K/2}=(K+d+n0?1)/2.

Theorem5 Let G=Cn(1,d)(n≥6,d≥2)be a circulant graph,then

where K=bn/dc>2.

ProofIn order to obtain one upper bound of d4(0,t)=min{max{|t(i)|:t(i)∈P4(0,t)}:for all P4(0,t)},we calculate the maximum sum of step numbers of every path from 0 to t through its corresponding four disjoint paths constructed above.

Case 1k,0,i,0.

If i

If i>n0,then d4(0,t)≤max{k+i,K?k?1+d?i}≤max{k+i,K+d}≤K+d;

If i=n0,then d4(0,t)≤max{k+i,K?k,K?k+d?1}≤max{k+i,K+d}≤K+d.

Case 2k=0,i,0,

If n0≥i>0,then d4(0,t)≤max{i,d?i+1,K+n0?i}≤K+d;

If i>n0>0,then d4(0,t)≤max{i,d?i+1,K+i?n0}≤K+d;

If i>n0=0,then d4(0,t)≤max{i,d?i+1,K+d?i?1}≤K+d.

Case 3k,0,i=0,

If n0>i=0,then d4(0,t)≤max{k,k+2,K+n0?k}=max{k+2,K+n0?1?k}≤K+d;

If n0=i=0,then d4(0,t)≤max{k,k+2,K?k}=max{k+2,K?k}≤K+d;

From the above cases,we deduce that d4(G)=max{d4(0,t):t∈V(G)}≤K+d.

Corollary 1Let Cn(1,d)(n≥6,d≥2)be a circulant graph,then

where K=bn/dc>2.

主站蜘蛛池模板: 在线免费看片a| 成年网址网站在线观看| 婷婷在线网站| 国产精品美女免费视频大全 | 丁香五月激情图片| 国产亚洲欧美日韩在线一区二区三区| 国产精品久久久久久久久久久久| 久久黄色一级视频| 久久久久青草线综合超碰| 黄片一区二区三区| 91破解版在线亚洲| 无码AV日韩一二三区| 十八禁美女裸体网站| 久久国产黑丝袜视频| 黄色网站不卡无码| 亚洲人成在线免费观看| 91精品伊人久久大香线蕉| 成人字幕网视频在线观看| 日本欧美午夜| 国产靠逼视频| 国产精品微拍| 在线观看国产小视频| 欧美在线三级| 国产精品丝袜在线| 久久五月天国产自| 欧美一区日韩一区中文字幕页| 免费精品一区二区h| 日韩无码视频播放| 亚洲天堂视频网站| 国产免费黄| 色综合天天操| 国产成人精品一区二区| 老司机午夜精品视频你懂的| 国产在线98福利播放视频免费| 亚洲欧美综合另类图片小说区| 欧美日韩导航| 中文字幕1区2区| 日本高清免费不卡视频| 中文字幕亚洲专区第19页| 亚洲人成成无码网WWW| 久久免费精品琪琪| 欧美中文字幕第一页线路一| 欧美中文字幕无线码视频| 野花国产精品入口| 亚洲日本中文综合在线| 日韩天堂网| 少妇人妻无码首页| 国产高清在线观看| 91精选国产大片| 国产精品人莉莉成在线播放| 制服丝袜一区二区三区在线| 日韩精品成人在线| 成人福利免费在线观看| 久久精品国产国语对白| 日本在线免费网站| 欧美专区日韩专区| 国产乱子伦一区二区=| 午夜精品区| 国产美女免费网站| 狂欢视频在线观看不卡| 国产成人亚洲无码淙合青草| 一级片免费网站| 九九九久久国产精品| 国产中文一区a级毛片视频| 免费播放毛片| 亚洲码一区二区三区| 极品尤物av美乳在线观看| 欧美国产中文| 97se亚洲综合在线韩国专区福利| 色婷婷在线影院| 欧美激情,国产精品| 国产精品99久久久久久董美香| 日韩久久精品无码aV| 亚洲精品天堂自在久久77| 午夜欧美理论2019理论| 91视频首页| 九九热精品在线视频| 亚洲男人在线| 国产成人毛片| 99re热精品视频国产免费| 国产亚洲男人的天堂在线观看| 日韩无码黄色|