許飄勇
在講解不等式選講時,有道填空題要求解函數y=2|x-1|+|x-2|+|4x-3|的單調區間和值域,若用零點分區間法求出分段函數的表達式,再用圖象,得出單調區間和值域,雖然思路簡單,但耗時費力,準確率低.筆者思考能不能根據參數就可畫出函數草圖,數形結合就易得答案.
對于可化為形如f(x)=k1|x-a1|+k2|x-a2|+…+kn|x-an|(其中a1 當k1+k2+…+kn>0時, 若x∈(∞,a1],則f(x)=-k1(x-a1)-k2(x-a2)-…-kn(x-an)=-(k1+k2+…+kn)x+(k1a1+k2a2+…+knan) 所以函數在(∞,a1]單調遞減. 若x∈[an,+∞),則f(x)=k1(x-a1)+k2(x-a2)+…+kn(x-an)=(k1+k2+…+kn)x-(k1a1+k2a2+…+knan) 所以函數在[an,+∞)單調遞增. 若x∈[ai,ai+1](i=1,2…n-1) 當f(ai) 當f(ai)>f(ai+1)時,函數在[ai,ai+1]單調遞減; 當f(ai)=f(ai+1)時,函數在[ai,ai+1]的圖象是(ai,f(ai)),(ai+1, f(ai+1))為端點的水平線段. 若記M=min{f(a1),f(a2)…f(an)},則此時值域為[M,+∞). 當k1+k2+…+kn<0時, 若x∈(-∞,a1],則f(x)=-k1(x-a1)-k2(x-a2)-…-kn(x-an)= -(k1+k2+…+kn)x+(k1a1+k2a2+…+knan) 所以圖象在(-∞,a1]單調遞增. 若x∈[an,+∞),則f(x)=k1(x-a1)+k2(x-a2)+…+kn(x-an)=(k1+k2+…+kn)x-(k1a1+k2a2+…+knan) 所以圖象在[an,+∞)單調遞減. 若x∈[ai,ai+1](i=1,2…n-1) 當f(ai,) 當f(ai,)>f(ai+1)時,在[ai,ai+1]單調遞減; 當f(ai,)=f(ai+1)時,在[ai,ai+1]圖象是(ai,f(ai)),(ai+1,f(ai+1))為端點的水平線段. 若記N=max{f(a1),f(a2)…f(an)},則此時值域為(-∞,N] 當k1+k2+…+kn=0時, 若x∈(-∞,a1],則f(x)=-k1(x-a1)-k2(x-a2)-…-kn(x-an)=-(k1+k2+…+kn)x+(k1a1+k2a2+…+knan)=(k1a1+k2a2+…+knan) 所以圖象在(-∞,a1]是以(a1,f(a1))為端點方向向左的水平射線. 若x∈[an,+∞),則f(x)=k1(x-a1)+k2(x-a2)+…+kn(x-an)=(k1+k2+…+kn)x-(k1a1+k2a2+…+knan)=-(k1a1+k2a2+…+knan) 所以圖象在[an,+∞)是以(an,f(an))為端點方向向右的水平射線. 若x∈[ai,ai+1](i=1,2…n-1) 當f(ai) 當f(ai)>f(ai+1)時,在[ai,ai+1]單調遞減 當f(ai)=f(ai+1)時,在[ai,ai+1]圖象是(ai,f(ai)),(ai+1,f(ai+1))為端點的水平線段. 若記M=min{f(a1),f(a2)…f(an)},N=max{f(a1),f(a2)…f(an)},則值域為[M,N]. 總之,形如f(x)=k1|x-a1|+k2|x-a2|+…+kn|x-an|(其中a1 1.定義域x∈(-∞,+∞). 2.圖象、單調性、值域.整個圖象是連續不斷的折線. 當k1+k2+…+kn>0時,圖象為W型.在(-∞,a1]單調遞減,在[an,+∞)單調遞增,中間是以(ai,f(ai)),(ai+1,f(ai+1))(i=1,2…n-1)為端點的線段連接而成的連續不斷的折線.若記M=min{f(a1),f(a2)… f(an)},則值域為[M,+∞). 當k1+k2+…+kn<0時,圖象為M型,在(-∞,a1]單調遞增,在[an,+∞)單調遞減,中間是以(ai,f(ai)),(ai+1,f(ai+1))(i=1,2…n-1)為端點的線段連接而成的連續不斷的折線.若記N=max{f(a1),f(a2)… f(an)},則值域為(-∞,N]. 當k1+k2+…+kn=0時,圖象為Z型,在(-∞,a1]是以(a1,f(a1))為端點方向向左的水平射線,在[an,+∞)是以(an,f(an))為端點方向向右的水平射線,中間是以(ai,f(ai)),(ai+1,f(ai+1))(i=1,2…n-1)為端點的線段連接而成的連續不斷的折線.若記M=min{f(a1),f(a2)… f(an)},N=max{f(a1),f(a2)…f(an)},則值域為[M,N]. 所以y=2|x-1|+|x-2|-|4x-12|可化為y=2|x-1|+|x-2|-4|x-3|,先描(1,-7),(2-2),(3,5),計算2+1-4=-1,可得圖象為M型,易得單調增區間為(-∞,3],單調減區間為[3,+∞)];值域為(-∞,5].