于 越,常 亮,尹 鏹
(1.鐵道第三勘察設計院集團有限公司,天津 300251;2.西南交通大學牽引動力國家重點實驗室,成都 610031)
鐵路高速化是當今世界各國鐵路現代化發展的必然趨勢。列車速度的提高,其產生的環境影響明顯加劇,其中高速列車運營產生的噪聲污染尤為突出,列車通過隧道時車內外聲環境更加惡化。在津秦客運專線聯調試驗及石太、武廣客運專線等線路運營過程中,當高速動車組通過隧道區段時,車廂內聲級水平明顯增高引起乘客舒適度降低[1-2]。
妥善處理高速列車通過隧道時所帶來的環境噪聲問題,事關高速鐵路列車內乘客的身心健康,對于車內乘客的乘車環境的改善有著重大的意義,這也是此類高速鐵路建設工程所必須要考慮的問題。因此,本文所開展的高速鐵路隧道降噪措施研究是很必要的[3-4]。
我國國內在部分公路隧道中采取過隧道吸聲降噪處理措施,對于降低隧道內機動車通行產生的轟鳴聲相較未采取降噪措施的隧道具有明顯效果。韓國、德國等均有在公路及鐵路隧道中采取過吸聲降噪措施的先例,但是在高速鐵路應用較少[5-9]。我國尚未在高速鐵路隧道內采取吸聲降噪措施,而由于高速列車速度較高,須同時考慮吸聲效果及構件承受列車運行脈動力等多個因素。以隧道內消聲降噪措施為研究對象,針對在隧道內壁敷設吸聲結構的降噪方法,采用聲學軟件對其進行仿真分析,并對吸聲材料不同的鋪設方案、面積所產生的降噪效果進行評價,以期得到更加經濟有效的降噪方式。高速鐵路隧道內列車聲輻射示意見圖1。

圖1 高速鐵路隧道內列車聲輻射示意
對于隧道內壁鋪設吸聲板材的降噪方法,其吸聲板結構常采用顆粒或泡沫多孔材料進行制備。表示多孔吸聲材料的吸聲能力的參數為吸聲系數和聲阻抗率,一般工程應用中軌道吸聲材料要求其降噪系數大于0.8[10]。本文計算中采用的某種適用于隧道內吸聲降噪的無機多孔材料的吸聲系數如圖2所示,其降噪系數滿足要求。
影響多孔材料吸聲性能的主要是流阻、孔隙率和結構因數、厚度、體積密度等參數,對隧道壁面吸音板來說,還與其在隧道內的安裝位置、安裝面積等因素有關,針對隧道內不同安裝位置、不同安裝面積下的吸聲材料降噪效果進行分析研究。

圖2 計算中采用的吸聲材料吸聲系數
本文中,采用邊界元法對前述各方案的降噪效果進行計算。邊界元法是求解結構振動向周圍空間輻射噪聲問題的一種數值方法,包括直接邊界元和間接邊界元法,它們都以 Helmholtz邊界積分方程為基礎[10-13]。
在簡諧激勵作用下結構振動外部流體介質中產生的輻射聲壓p(r)滿足Helmholtz微分方程

式中,k為波數。在邊界上,需滿足速度邊界條件、聲壓邊界條件和聲阻抗邊界條件

對于外聲場問題,在無限遠處Helmholtz方程還應滿足

得到Helmholtz直接和間接邊界積分方程后,對邊界積分方程利用邊界元法進行離散,即得到邊界元求解方程。
本文根據邊界元法的基本原理,建立了如圖2所示的不同表面結構吸音板-軌道-車輛的二維邊界元模型。通過在吸音板表面施加相同的聲阻抗邊界條件,比較不同表面結構形式對其降噪效果的影響,計算時聲源采用點聲源,聲源大小按列車運行速度為350 km/h下的輻射噪聲選取,列車采用CRH3型高速列車的基本截面尺寸,軌道結構采用CRTSⅡ型板式無砟軌道。為了對比分析隧道壁面鋪設吸聲板先后的降噪效果,計算列車表面附近場點的聲壓級來進行比較分析。本文建立的二維車輛-隧道的線單元邊界網格如圖3所示。

圖3 隧道壁面全部鋪設吸聲材料的列車-隧道-吸聲板二維邊界元模型
據前述所建立的二維邊界元模型,計算得到鋪設與不鋪設吸聲材料時,隧道內的車體表面測點的聲壓級頻譜如圖4所示,500 Hz頻率下隧道內壁全部鋪設吸聲材料前后其隧道內的噪聲云圖如圖5所示。

圖4 兩種對比工況的計算結果

圖5 500 Hz頻率下鋪設吸聲材料前后隧道內的降噪效果
計算結果可以看出,隧道壁面安裝吸音板后,其吸聲降噪效果明顯改善,特別是隧道內輻射噪聲的高頻成分明顯降低。在隧道表面全部鋪設吸聲材料后,其A聲級可降低約14.3 dB,因此,采用此種降噪方式降低隧道內的聲輻射水平是可行的。
根據吸聲結構的整體降噪效果及安裝、維護和安全等因素,設計如圖6所示4種吸聲材料的安裝方案,并根據這4種降噪方案,采用數值計算方法分析計算不同安裝方式下的降噪效果。計算中,邊界元法模型建立的不同計算截面如圖7所示。

圖6 隧道內吸聲材料的鋪設方案(單位:m)

圖7 根據不同設計方案建立的邊界元法計算截面
圖中,方案1為整體安裝,即沿列車運行方向隧道內壁全部鋪設吸聲材料;方案2為整體安裝及隧道內部上部、下部部分安裝的組合方式,即按列車線路方向吸聲材料的鋪設方式發生變化;方案3為整體安裝及隧道內壁下部安裝的組合,吸聲材料的鋪設面積較方案2有所減少;方案4為隧道內壁上部、下部的安裝方式,此種鋪設方式進一步減少了吸聲材料的鋪設面積。
根據邊界元法,前述4種設計方案中4個基本計算截面的計算結果如圖8所示。
在計算上述4種方案的吸聲降噪效果時,由于模型采用二維邊界元模型,而設計方案在線路縱向其吸聲材料的安裝情況有變化,截面的邊界條件改變,因此,可以根據不同截面的吸聲降噪效果進行疊加對其近似。在計算中,方案1、方案4沿線路縱向截面邊界條件不變,可根據相應截面邊界條件進行降噪效果的計算;對于方案2,可看作圖7中截面3和截面4的組合,需綜合考慮兩者的降噪效果,其降噪效果取兩者平均值;對于方案3,可看作圖7中截面2和截面4的組合,其降噪效果取兩者平均值。1 000 Hz下不同鋪設位置、面積時隧道內的噪聲云圖如圖9所示。圖6給出的不同設計方案的綜合降噪效果如表1所示。從計算結果可以看出,隨著吸聲材料覆蓋率的增加,其吸聲降噪效果也越明顯。

圖8 隧道內壁吸聲材料鋪設面積不同時的降噪效果(對應圖7中的截面號)

圖9 隧道內壁吸聲材料不同鋪設面積時的1 000 Hz時降噪效果(對應圖7中的截面號)

表1 邊界元法計算的隧道內吸聲降噪效果匯總
理論計算結果表明,在隧道壁面安裝吸聲結構最多可使隧道內噪聲降低13~14 dB,且隨著吸聲材料覆蓋率的增加,降噪效果就更加顯著。對于所列4種方案,方案1其吸聲降噪效果最佳,但其安裝面積也越大,花費成本高。對比方案2,方案1安裝面積增大近10 000 m2后,其降噪效果僅增加3~4 dB,因此其經濟性較方案2較差。對于安裝面積最少的方案4,其降噪效果較方案1、方案2、方案3差,對于噪聲水平要求較高的情況,往往難以滿足要求。
本文計算分析了隧道內壁吸聲材料不同鋪設方案的降噪效果。計算中采用SYSNOISE軟件建立了350 km/h速度下高速列車通過時隧道內吸音板降噪效果的二維邊界元模型,考慮了車輛表面及軌道結構對聲音的反射吸收效果,并在隧道內壁吸音板結構表面施加聲阻抗邊界條件來進行吸音板降噪效果的比較。在本文計算條件下,通過對不同鋪設方案隧道內聲壓級的變化進行比較,得到的主要結論如下。
(1)在隧道內壁鋪設吸聲材料對于降低隧道內的噪聲水平有著顯著的效果,對于隧道內部壁面全部鋪設吸聲材料的降噪方案,其隧道內聲壓級的降低量約為14.3 dBA,但實際工程應用中,需考慮隧道結構條件、行車安全性及工程經濟性等因素。
(2)隨著隧道內壁吸聲板鋪設面積的增大,其吸聲降噪效果越好,底部鋪設、底部和中部鋪設、全部鋪設的二維邊界元計算截面模型得到的降噪量分別為14.3、8.0、5.2 dBA。
(3)考慮到工程經濟性等因素,不同鋪設方案下,隧道內的降噪效果不同。其中隧道壁面整體安裝吸聲材料降噪效果最優,隧道內聲壓級降低量為14.3 dBA,隧道壁面僅底部安裝吸聲材料降噪效果最差,約為5.2 dBA;實際工程應用時應綜合考慮,合理選取降噪方案。
[1]雷曉燕,圣小珍.鐵路交通噪聲與振動[M].北京:科學出版社,2004.
[2]馬筠,翟婉明.無砟軌道噪聲振動特性及其治理措施研究[J].中國鐵路,2009(10):38-43.
[3]K.Takagiet al,Prediction of road traffic noise around tunnel mouth.Pro.Inter.Noise,2000:3099-3104.
[4]焦大化,錢德生.鐵路環境噪聲控制[M].北京:中國鐵道出版社,1990.
[5]Jian Kang.A method for Predicting acoustic indices in longen closures[J].Applied Acousties,1997,51(2):169-180.
[6]夏德榮.公路隧道交通噪聲的聲學處理[J].噪聲與振動控制,1990(2):35-36.
[7]陳興,梁志堅,等.公路隧道噪聲降噪案例研究[J].聲學技術,2008,27(2):244-246.
[8]王美燕.公路隧道噪聲預測及降噪措施研究[D].西北工業大學碩士學位論文,2007.
[9]張銳,黃曉明,等.隧道噪聲的調查與分析[J].公路交通科技,2006,23:29-32.
[10]Allard J,Atalla N.Propagation of Sound in Porous Media:Modelling Sound Absorbing Materials[M].Wiley,2009.
[11]DJThompson,CJCJones,N Turner.Investigation into the validity of two-dimensional models for sound radiation from waves in rails[J].The Journal of the Acoustical Society of America,2003.
[12]何琳,朱海潮,邱小軍,杜功煥.聲學理論與工程應用[M].北京:科學出版社,2006.
[13]蘇衛青.高速鐵路噪聲影響評價研究[J].鐵道標準設計,2011(5):100-104.
[14]趙鍵,汪鴻振,朱物華.邊界元法計算已知振速封閉面的聲輻射[J].聲學學報,1989,14(4):250-257.