李 怡,席萬鵬,王邦祥
(1.西南大學園藝園林學院,重慶 400716;2.南方山地園藝學教育部重點實驗室,重慶 401147;3.重慶生產力促進中心,重慶 401117)
?
柑橘果實防治慢性疾病及其活性評價方法研究進展
李 怡1,2,席萬鵬1,2,王邦祥3,*
(1.西南大學園藝園林學院,重慶 400716;2.南方山地園藝學教育部重點實驗室,重慶 401147;3.重慶生產力促進中心,重慶 401117)
柑橘果實含豐富生物活性物質,具有抗氧化、抗癌、預防循環系統疾病、抗炎癥、抗過敏以及抗菌等活性,其醫藥和保健功能受到關注,柑橘生物活性物質的功能評價成為熱點問題。本文系統地回顧了近年來柑橘果實生物活性與疾病防治的有關研究報道,總結了柑橘果實主要的生物活性及其評價方法的研究現狀,旨在為進一步開發利用我國豐富的柑橘資源提供新信息。
柑橘,生物活性,慢性疾病,評價方法
柑橘是世界上最受歡迎的水果之一,有金柑、枸櫞、檸檬、來檬、柚、葡萄柚、甜橙、酸橙、柑和橘等重要栽培類型。我國是柑橘果樹的重要起源地,具有豐富的柑橘資源。近年的研究證明,柑橘果實含豐富的營養物質和生物活性成分,具有重要的營養、醫藥和保健價值[1]。生物活性物質是指存在于食品、生物體內的能與人體各種機能產生生物活化效應的一類物質,生物活性物質參與調控人體生理代謝,對維持身體健康具有重要意義。
21世紀的人們面臨著諸如癌癥、心血管疾病、糖尿病等退行性疾病的威脅,柑橘果實中具有大量能夠防治這些流行病的生物活性物質。目前有大量研究對柑橘果實生物活性物質進行了評價,然而對柑橘果實生物活性評價方法卻沒有系統深入的研究。筆者對近年來國內外柑橘果實生物活性及評價研究報道做了一個系統總結,旨在為下一步研究提供新信息。
柑橘果實中的生物活性物質有香精油、多甲氧基黃酮、天然色素、果膠、多酚(酚酸、類黃酮)、黃酮苷(橙皮苷、柚皮苷等)、香豆素類、萜類等。大量的抗霉菌和抗酵母實驗證明了柑橘精油及其單體具有抑菌作用。柑橘精油抑制食源性病原體如沙門氏菌(shlmonella.spp)和大腸桿菌O157∶H7等。多種多甲氧基黃酮(PMFs)也具有很強的抑菌作用[2],同時PMFs具有降脂、胰島素增敏、降壓、抗炎的功效[3]。柑橘皮、籽中富含的果膠、類胡蘿卜素具有抗腫瘤、調劑免疫活性,柑橘果膠多糖增加能促進造血生長因子分泌及骨髓細胞增殖,對腸免疫系統具有調節作用[4]。柑橘多酚中研究最多的是類黃酮,類黃酮具有調節免疫、抗炎、抗氧化、抗腫瘤等活性。柑橘類黃酮能通過調節細胞信號轉導調節T淋巴細胞、B淋巴細胞活性,提高免疫[5],通過抗自由基、抗脂質過氧化、抗金屬螯合等途徑清除自由基,實現抗氧化[6]。黃酮苷具有抗氧化、抗炎活性。柚皮苷通過正向調節超氧化物歧化酶、過氧化氫酶、谷胱甘肽過氧化物酶的基因的表達,增加超氧化物歧化酶和過氧化氫酶活性,調節抗氧化能力[7],橙皮苷通過抑制炎癥反應相關的酶來抑制炎癥反應[8]。香豆素類化合物具有維持血糖平衡[9],調節免疫[10]的作用。柑橘萜類化合物等能抑制炎癥反應,單萜類物質在實驗模型中表現出良好的抗癌活性和心臟保護活性。
柑橘果實中生物活性物質具有顯著的抗氧化活性、抗炎活性和抗腫瘤活性,能預防由氧化應激和炎癥因子啟動和促發一系列慢性病,如高脂血癥、冠心病、動脈粥樣硬化,糖尿病和阿爾茨海默癥等,對心血管疾病和癌癥患者具有保護作用[11]。
2.1 癌癥防治及機理
統計發現,柑橘果實混合提取物中類黃酮(flavonids)、類胡蘿卜素(carotenoid)和類檸檬苦素(limonoids)具有抗癌活性,其中研究報道最多的是類黃酮,類黃酮的抗癌活性表現在減輕細胞毒作用,減輕DNA損傷,抗癌細胞增殖與遷移,促癌細胞凋亡四個方面。在致癌的最初階段類黃酮通過放大解毒作用控制腫瘤發展[12],橙皮素能顯著抑制絕經乳腺癌小鼠腫瘤細胞的雌激素應答基因pS2的過度表達,使血漿中雌激素含量降低,同時抑制細胞對葡萄糖的吸收,從而抑制乳腺腫瘤發展[13];柚皮苷通過促進氧化損傷后的人類前列腺腫瘤細胞DNA修復,能防止前列腺腫瘤細胞突變,在一定程度上具有預防癌癥的效果[14];柑橘類黃酮抑制癌細胞胞分泌基質金屬蛋白酶(MMP),抑制癌細胞遷移、附著,入侵周圍組織從而抗癌細胞增殖[15];橘皮素能誘導半光天冬氨酸-3激活,增加磷脂酰絲氨酸暴露面,誘導人類結腸癌細胞凋亡[16],另有研究表明,高溫處理過的柑橘果膠能抑制腫瘤細胞增殖,將細胞周期阻滯在G2/M期并誘導依賴半胱天冬酶-3的細胞凋亡[17]。
2.2 糖尿病防治及機理
截至目前,柑橘果實中的類黃酮、香精油、香豆素類和果膠等,已被證明能夠防治糖尿病。柑橘類黃酮(如柚皮苷、橙皮苷、川陳皮素,橘皮素)參與調控脂質代謝及其他與胰島素抵抗綜合征相關的代謝,被認為是治療代謝失調癥的新藥,如2型糖尿病和心血管疾病。甜橙皮提取物富含酚酸、類黃酮,治療雄性糖尿病小鼠后,小鼠肝臟、心臟、腎臟組織中耗水率、脂質過氧化反應與血清胰島素水平平行降低[18]。柑橘皮的油包中含有豐富的香精油,柑橘香精油含豐富的單萜(檸檬烯和γ-松油烯)和倍半萜烯,細胞實驗表明香櫞精油具有抗氧化、降血糖、抗膽堿酯酶的特性[19]。Sugiura等研究無核蜜桔對鏈脲霉素誘導的糖尿病大鼠肝臟抗氧化防御系統的長期作用影響,發現無核蜜桔對由細胞損傷和肝功能障礙惡化引起的慢性高血糖有抑制作用[20]。葡萄柚種子甲醇提取物中含有不同濃度的生物堿、強心甾、類黃酮、單寧和皂苷,給藥糖尿病大鼠后發現其具有降血壓降血脂的生物效應,具有治療1型糖尿病的潛力[21]。綜上,柑橘生物活性物質能抑制與肥胖有關的胰島素抵抗,促進胰島素分泌,維持機體糖、脂代謝平衡,同時可以預防并治療糖尿病綜合征,從而對糖尿病防治有較好效果。

圖1 柑橘生物活性物質防治糖尿病機理圖Fig.1 The anti-diabetes mechanism of Citrus bioactive
2.3 心血管疾病防治及機理
心血管疾病嚴重危害人類健康,主要包括冠心病、先天性心臟病、高血壓和動脈粥樣硬化等。防治心血管疾病有關的柑橘果實生物活性物質主要有類黃酮、類檸檬苦素、香豆素類和膳食纖維等。柑橘果實生物活性物質主要通過抑制血栓形成、調節血脂、抑制動脈粥樣硬化形成的途徑防治心血管疾病。體外研究表明類黃酮通過長期的累積影響束縛血小板膜[22]。血小板參與止血、血栓形成、炎癥過程,血小板聚合是冠狀動脈血栓初始形成的關鍵程序,類黃酮通過調節血小板功能減少血塊形成的風險[23]。血脂代謝異常是心血管疾病的誘發因子,柑橘生物活性物質能顯著降低人體血膽固醇[24]。當小鼠由1%乳清酸膳食誘導肝三酰甘油大量積累,超低密度脂蛋白分泌減少,增強三酰甘油合成并降低氧化程度時,橙皮苷抑制肝臟中由乳清酸誘導的三酰甘油積累和膽固醇含量的升高[25]。Manthey研究了橙皮苷、柚皮苷,多甲氧基黃酮與橘皮素配方劑對膳食誘導倉鼠高膽固醇癥的降血脂作用及代謝通路的影響。研究發現,含1%多甲氧基黃酮的膳食能顯著減少血清總超低密度脂蛋白及低密度脂蛋白,降低血清三酰基甘油,說明肝臟中高水平的多甲氧基黃酮代謝物可能在活體中直接產生降血脂作用[26]。炎癥刺激引起血管平滑肌增殖和遷移,容易引發動脈狹窄和粥樣硬化。Chen Siyu等研究發現柚皮苷能降低血管平滑肌細胞(VSMC)中血紅素氧合酶-1 mRNA(HO-1 mRNA)表達及其蛋白質活性,呈劑量依賴型降低TNF-α誘導的VSMC增殖及遷移,從而預防動脈粥樣硬化[27]。

表1 部分柑橘品種生物活性及作用機理研究Table1 Biological activity and mechanism of different citrus varieties
2.4 肥胖防治及機理
近年來,世界肥胖人數急劇上升。肥胖影響消化系統和內分泌系統的功能,增加心血管疾病和癌癥發生的危險性,如何減輕肥胖的疾病危險成為目前研究的焦點。從柑橘皮中分離出的多甲氧基黃酮和香豆素衍生物具有抗肥胖活性。在小鼠3T3-L1細胞脂肪積累實驗中,5-羥基-6,7,8,30,40-五甲氧基黃酮表現出最強的抗肥胖效果[28]。研究表明,柚皮素能激活PPAR-α轉錄因子,上調脂肪酸氧化相關的基因表達,有助于體內降血脂、抗肥胖[29]。
2.5 其他慢性疾病防治及機理
2.5.1 抗HIV 研究發現檸檬苦素和諾米林能抑制HIV-1在所有細胞系統中復制,分離感染HIV-1菌株后的人類外周血單核細胞(PBMC)經檸檬苦素和諾米林處理后呈劑量依賴性抑制病毒復制[30]。檸檬汁治療艾滋病人群由白色鏈珠菌引起的鵝口瘡比傳統龍膽紫有更好的效果[31]。客麥隆的傳統治療師發現用由柑橘、林生假榆橘、蘆薈、青蒿,火筒樹水煎液含類黃酮,具有抗氧化劑和抗菌劑功效,能輕易治愈艾滋病機會性感染皮膚病,如皰疹,卡波濟氏肉瘤,皮癬[32]。
2.5.2 鎮痛、抗痙攣 來檬、佛手精油主要成分檸檬烯(58.4%),β-蒎烯(15.4%),γ-萜品烯(8.5%),檸檬醛(4.4%)具有重要的解痙攣功效[33]。香櫞水提液中的黃酮類和酚類物質具有止痛功能[34]。
2.5.3 抗阿爾茨海默病 茨海默病是老年人常見疾病之一,嚴重影響老年人的生活質量,目前文獻報道生物堿類、黃酮類、皂苷類、香豆素類、酚酸類和木脂素類等植物化學成分針對阿爾茨海默病有較好的防治作用。Takashi招募了11例患者以探討多奈哌齊單獨治療和川陳皮素干預多奈哌齊治療阿爾茨海默病的穩定性和安全性,證明了川陳皮素對多奈哌齊治療的阿爾茨海默病患者的認知障礙加重有預防作用[35]。
3.1 體外實驗法
用體外法評價柑橘果實生物活性物質具有簡便、敏感性高、用藥量少、成本低的優點。用于評價柑橘果實生物活性物質的體外實驗法有:生化實驗法,細胞培養法,離體器官法。
評價天然活性物質抗氧化活性常用生化實驗法。如現在流行的ORAC法,DPPH法,FRAP法等,納米探針技術也用于評價抗氧化劑的還原能力[41]。Sun CD等用β-胡蘿卜素漂白法測定了柑橘果實不同組織部位檸檬苦素和諾米林的抗氧化能力,發現不同品種不同組織中檸檬苦素和諾米林的抗氧化能力不同[42]。Sun Y等用DPPH法測定了中國主要柑橘品種生理落果的抗氧化活性,證明了柑橘生理落果果實是多種抗氧化物質的潛在來源[43]。評價柑橘果實生物活性物抗腫瘤活性、免疫活性時,常用細胞培養法。常用的細胞株有巨噬細胞、癌細胞[44-45]、小腸細胞等。巨噬細胞在機體免疫調控和免疫反應中扮演重要角色。Ha等用酶標法、酶聯免疫法、單克隆抗體法檢測了柑橘柚皮蕓香苷對巨噬細胞中炎性介質的調控活性[46]。血管生成和免疫細胞粘附是癌癥和動脈粥樣硬化的重要過程,Kim J D利用體外培養的人臍靜脈內皮細胞(HUVECs)研究了四種類黃酮的抗氧化能力、細胞毒性、潛在的抗血管生成細胞粘附能力,探討了類黃酮對癌癥和動脈粥樣硬化的預防作用[47]。評價柑橘果實生物活性物抗病毒、抗血栓、抗心臟病活性時,常用離體器官法。Orallo 等對柑橘類黃酮橙皮素和柚皮素對完整大鼠主動脈潛在的血管舒張、抗氧化、環核苷酸磷酸二酯酶(PDE)抑制作用進行了研究,發現主動脈血管舒張作用主要與不同PDE同工酶抑制作用相關[48-49]。
3.2 體內實驗法
生物體內環境復雜,單獨的體外化學法不能完全地代表生物活性物質在體內的真實情況,對生物活性物質的研究依賴于體內實驗法。目前,柑橘生物活性物質體內生物功能評價大多基于相應的動物模型。Kurowska用高膽固醇膳食家兔飼喂誘導高水平的低密度脂蛋白-膽固醇,補充橙汁、葡萄柚汁觀察家兔的膽固醇代謝變化[50]。Lee等用高膽固醇膳食飼喂小鼠誘導高水平的三酰甘油、膽固醇,3-羥基-3-甲基戊二酰-輔酶A還原酶及脂酰輔酶A:膽固醇酰基轉移酶活性,在其膳食中加入0.1%的柚皮苷后發現以上指標降低[51]。Jain等通過小鼠氣囊炎癥模型,測定炎癥組織滲出物、組織形態學、血藥含量等指標以驗證柚皮苷、橙皮苷對小鼠炎癥模型的抗氧化和抗炎能力,證實了柚皮苷、橙皮苷抗炎能力強于吲哚美辛[52]。Okuyama 用暫時性全腦缺血小鼠模型研究驗證了橙皮油素抑制延遲海馬神經元細胞凋亡及其機制[53]。
3.3 人群調查
近年來,觀測生物活性物質在人體內的轉化轉運規律及對人的治療作用和毒副作用,成為評價生物活性物質活性的重要形式。柑橘果實的生物活性評價人群調查實驗主要在志愿者中進行。Olivier 等對24名營養狀況良好的健康志愿者進行了為期18周的橙汁及其主要多酚橙皮苷攝入對免疫調節的誘導作用的調查[54]。Dragan等采用隨機對照交叉實驗調查了橙汁中橙皮苷對人類志愿者白細胞營養基因組的影響,發現橙汁中的柚皮苷在基因組效應中起著相關作用[55]。Bertuzzi等對80名男性健康志愿者進行了檸檬精油超氧陰離子清除活性評價實驗,研究發現檸檬精油能減輕人類皮膚的脂質過氧化,對人類抵抗皮膚氧化損傷有實際應用[56]。
3.4 高通量篩選與組學新技術
隨著基因組學、代謝組學等組學技術的發展及疾病防治的分子和細胞作用機制、藥物作用靶標的不斷闡明,采用多指標活性篩選體系進行植物活性成分的高通量篩選勢在必行。活性成分的篩選模型已經從整體動物、系統、器官,組織深入到細胞、酶、受體、內源性活性物質基因。在柑橘生物活性物質結合代謝組學技術的研究中,色譜(HPLC,GC),質譜(MS),核磁共振(NMR)是常用的技術手段。常運用生物標記研究柑橘生物活性物質的營養功效及慢性疾病防治作用,脯氨酸甜菜堿、黃烷酮葡萄糖苷酸等被認定為研究柑橘體內代謝的標記物[57-58]。高通量篩選(High throughput screening,HTS)技術是以分子水平和細胞水平的實驗方法為基礎,具有微量、快速、靈敏和準確等特點。結合代謝組學與高通量技術篩選出代謝產物,能節省研究成本,提高研究效率,篩選出的代謝物可采用基因組學和蛋白組學做進一步的研究。功能基因芯片的出現為果品生物活性物質提供了一種簡易、可行的初篩方法。Inglese等用定量高通量篩選的方法,發現了一系列的類黃酮選擇性抑制熒光素酶,為其活性的藥理機制做出了指示[59]。高通量藥物實驗證明橙皮苷能激活Notch1,抑制神經內分泌腫瘤標志物的表達從而抑制良性腫瘤細胞增殖[60]。Luc等用改造過的對昆蟲蛻皮激素響應-受體高度敏感的蠶蛾細胞系,高通量篩選出酸橙為蛻皮激素受體拮抗劑[61]。
目前國內外對柑橘果實生物活性物質防治人類慢性疾病方面的研究領域和應用范圍在不斷擴大,但存在不少問題,主要如下:目前柑橘果實生物活性物質的研究多數停留在提取分離、結構鑒定以及基于細胞、器官、或是動物模型的總體評價,但對其詳盡的調控機理研究,例如活性物質與靶標構效關系等研究較少;柑橘果實生物活性物質防治慢性疾病的研究基本上處在體外和動物實驗階段,且缺乏臨床應用研究;柑橘果實生物活性物質在人體內發揮生理活性的量效關系等方面的研究較少。針對以上問題,筆者認為今后的研究重點應當是:建立適當的多指標柑橘果實生物活性物質篩選評價模型,利用高通量技術,全面的追蹤分離活性成分;加強柑橘果實生物活性物質防治慢性疾病機理的研究,明確不同的活性作用靶標;加大人體內源性環境對柑橘果實生物活性物質活性的影響的研究,預測生物活性物質的體內生物利用度。隨著柑橘果實內具有防治慢性疾病的生物活性物質被逐漸發現,及其相關的作用機制被闡明,柑橘在醫藥保健和食品領域有著廣闊的開發利用前景。夯實柑橘果實內生物活性物質防治慢性疾病方面的研究將為柑橘功能性食品的開發提供更為穩健與長足的發展。
[1]Economos C,Clay W D. Nutritional and health benefits of citrus fruits[J]. Food,Nutrition and Agriculture(FAO)Alimentation,Nutrition et Agriculture(FAO)Alimentacion,Nutricion y Agricultura(FAO),1999.
[2]Manthey J A,Grohmann K,Montanari A Ash,et al. Polymethoxylated flavones derived from citrus suppress tumor necrosis factor-a expression by human monocytes[J]. Journal of Natural Products,1999,62:441-444.
[3]Assini J M,Mulvihill E E,Huff M W. Citrus flavonoids and lipid metabolism[J]. Current opinion in lipidology,2013,24(1):34-40.
[4]Suh H J,Yang H S,Ra K S,et al. Peyer's patch-mediated intestinal immune system modulating activity of pectic-type polysaccharide from peel of[J]. Food chemistry,2013,138(2):1079-1086.
[5]Manthey J A,Guthrie N,Grohmann K. Biological properties of citrus flavonoids pertaining to cancer and inflammation[J]. Current Medicinal Chemistry,2001,8(2):135-153.
[6]Bombardelli E,Morazzoni P. The flavonoids:new perspectives in biological activities and therapeutics[J]. Chimica oggi,1993,11(7-8):25-28.
[7]Jeon S M,Bok S H,Jang M K,et al. Antioxidative activity of naringin and lovastatin in high cholesterol-fed rabbits[J]. Life Sciences,2001,69(24):2855-2866.
[8]Sakata K,Hirose Y,Qiao Z,et al. Inhibition of inducible isoforms of cyclooxygenase and nitric oxide synthase by flavonoid hesperidin in mouse macrophage cell line[J]. Cancer Letters,2003,199(2):139-145.
[9]Ramesh B,Pugalendi K V. Influence of umbelliferone on glycoprotein components in diabetic rats[J]. Toxicology Mechanisms and Methods,2007,17(3):153-159.
[10]Jun D Y,Kim J S,Park H S,et al. Apoptogenic activity of auraptene of Zanthoxylum schinifolium toward human acute leukemia Jurkat T cells is associated with ER stress-mediated caspase-8 activation that stimulates mitochondria-dependent or-independent caspase cascade[J]. Carcinogenesis,2007,28(6):1303-1313.
[11]Sen S,Chakraborty R,Sridhar C,et al. Free radicals,antioxidants,diseases and phytomedicines:current status and future prospect[J]. International Journal of Pharmaceutical Sciences Review and Research,2010,3(1):91-100.
[12]Manach C,Regerat F,Texier O,et al. Bioavailability,metabolism and physiological impact of 4-oxo-flavonoids[J]. Nutrition Research,1996,16(3):517-544.
[13]Yang Y,Wolfram J,Boom K,et al. Hesperetin impairs glucose uptake and inhibits proliferation of breast cancer cells[J].Cell Biochemistry and Function,2013,31(5):374-379.
[14]Gao K,Henning S M,Niu Y,et al. The citrus flavonoid naringenin stimulates DNA repair in prostate cancer cells[J]. The Journal of Nutritional Biochemistry,2006,17(2):89-95.
[15]Liu H,Radisky D C,Nelson C M,et al. Mechanism of Akt1 inhibition of breast cancer cell invasion reveals a protumorigenic role for TSC2[J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103(11):4134-4139.
[17]Hao M,Yuan X,Cheng H,et al. Comparative studies on the anti-tumor activities of high temperature-and pH-modified citrus pectins[J]. Food & function,2013,4(6):960-971.
[18]Parmar H S,Kar A. Antidiabetic potential of Citrus sinensis and Punica granatum peel extracts in alloxan treated male mice[J]. Biofactors,2007,31(1):17-24.
[19]Conforti F,Statti G A,Tundis R,et al. In vitro activities of Citrus medica L. cv. Diamante(Diamante citron)relevant to treatment of diabetes and Alzheimer's disease[J]. Phytotherapy Research,2007,21(5):427-433.
[20]Sugiura M,Ohshima M,Ogawa K,et al. Chronic administration of Satsuma mandarin fruit(Citrus unshiu Marc.)improves oxidative stress in streptozotocin-induced diabetic rat liver[J]. Biological and Pharmaceutical Bulletin,2006,29(3):588-591.
[21]Adeneye A A. Hypoglycemic and hypolipidemic effects of methanol seed extract of Citrus paradisi Macfad(Rutaceae)in alloxan-induced diabetic Wistar rats[J]. Nigerian Quarterly Journal of Hospital Medicine,2007,18(4):211-215.
[22]Van Wauwe J,Goossens J. Effects of antioxidants on cyclooxygenase and lipoxygenase activities in intact human platelets:comparison with indomethacin and ETYA[J]. Prostaglandins,1983,26(5):725-730.
[23]Guerrero J A,Lozano M L,Castillo J,et al. Flavonoids inhibit platelet function through binding to the thromboxane A2 receptor[J]. Journal of Thrombosis and Haemostasis,2005,3(2):369-376..
[24]Cha J Y,Cho Y S,Kim I,et al. Effect of hesperetin,a citrus flavonoid,on the liver triacylglycerol content and phosphatidate phosphohydrolase activity in orotic acid-fed rats[J]. Plant Foods for Human Nutrition,2001,56(4):349-358.
[25]Kim H K,Jeong T S,Lee M K,et al. Lipid-lowering efficacy of hesperetin metabolites in high-cholesterol fed rats[J]. Clinica chimica acta,2003,327(1):129-137.
[26]Kurowska E M,Manthey J A. Hypolipidemic effects and absorption of citrus polymethoxylated flavones in hamsters with diet-induced hypercholesterolemia[J]. Journal of Agricultural and Food Chemistry,2004,52(10):2879-2886.
[27]Chen S,Ding Y,Tao W,et al. Naringenin inhibits TNF-α induced VSMC proliferation and migration via induction of HO-1[J]. Food and Chemical Toxicology,2012,50(9):3025-3031.
[28]Hirata T,Fujii M,Akita K,et al. Identification and physiological evaluation of the components from fruits as potential drugs for anti-corpulence and anticancer[J]. Bioorganic & Medicinal Chemistry,2009,17(1):25-28.
[29]Cho K W,Kim Y O,Andrade J E,et al. Dietary naringenin increases hepatic peroxisome proliferators-activated receptor α protein expression and decreases plasma triglyceride and adiposity in rats[J]. European Journal of Nutrition,2011,50(2):81-88
[30]Battinelli L,Mengoni F,Lichtner M,et al. Effect of limonin and nomilin on HIV-1 replication on infected human mononuclear cells[J]. Planta medica,2003,69(10):910-913.
[31]Wright S C,Maree J E,Sibanyoni M. Treatment of oral thrush in HIV/AIDS patients with lemon juice and lemon grass()and gentian violet[J]. Phytomedicine,2009,16(2):118-124.
[32]Noumi E,Manga P N. Traditional medicines for HIV/AIDS and opportunistic infections in north-west Cameroon:Case of skin infections[J]. Am J Trop Med Hyg,2011,1:44-64.
[33]Spadaro F,Costa R,Circosta C,et al. Volatile composition and biological activity of key lime Citrus aurantifolia essential oil[J]. Natural Product Communications,2012,7(11):1523-1526.
[34]Negi A,Juyal V. Analgesic activity of fruit decoction of Citrus medica Linn[J]. Journal of Pharmacy Research,2010,3(9):2119-2121.
[35]Seki T,Kamiya T,Furukawa K,et al. Nobiletin-rich Citrus reticulata peels,a kampo medicine for Alzheimer's disease:A case series[J]. Geriatrics & gerontology international,2013,13(1):236-238.
[36]Putri H,Nagadi S,Larasati Y A,et al. Cardioprotective and hepatoprotective effects of peels extract on rats model[J]. Asian Pacific journal of tropical biomedicine,2013,3(5):371-375.
[37]Nakajima A,Aoyama Y,Nguyen T T L,et al. Nobiletin,a citrus flavonoid,ameliorates cognitive impairment,oxidative burden,and hyperphosphorylation of tau in senescence-accelerated mouse[J]. Behavioural brain research,2013,250:351-360.
[38]M?kynen K,Jitsaardkul S,Tachasamran P,et al. Cultivar variations in antioxidant and antihyperlipidemic properties of pomelo pulp([L.]Osbeck)in Thailand[J]. Food chemistry,2013,139(1):735-743.
[39]Panara K. A review on phytochemical and pharmacological properties of Citrus medica Linn[J]. International Journal of Pharmaceutical & Biological Archive,2012,3(6).
[40]Costa C A R A,Cury T C,Cassettari B O,et al. Citrus aurantium L. essential oil exhibits anxiolytic-like activity mediated by 5-HT1A-receptors and reduces cholesterol after repeated oral treatment[J]. BMC Complementary and Alternative Medicine,2013,13(1):42.
[41]Huang D,Ou B,Prior R L. The chemistry behind antioxidant capacity assays[J]. Journal of Agricultural and Food Chemistry,2005,53(6):1841-1856.
[42]Sun C D,Chen K S,Chen Y,et al. Contents and antioxidant capacity of limonin and nomilin in different tissues of citrus fruit of four cultivars during fruit growth and maturation[J]. Food Chemistry,2005,93(4):599-605.
[43]Sun Y,Qiao L,Shen Y,et al. Phytochemical profile and antioxidant activity of physiological drop of citrus fruits[J]. Journal of Food Science,2013,78(1):C37-C42.
[44]Chidambara Murthy K N,Jayaprakasha G K,Kumar V,et al.Citrus limonin and its glucoside inhibit colon adenocarcinoma cell proliferation through apoptosis[J]. Journal of Agricultural and Food Chemistry,2011,59(6):2314-2323.
[45]Lee S,Ra J,Song J Y,et al. Extracts from promote immune-mediated inhibition of tumor growth in a murine renal cell carcinoma model[J]. Journal of ethnopharmacology,2011,133(3):973-979.
[46]Ha S K,Park H Y,Eom H,et al. Narirutin fraction from citrus peels attenuates LPS-stimulated inflammatory response through inhibition of NF-κB and MAPKs activation[J]. Food and Chemical Toxicology,2012,50(10):3498-3504.
[47]Kim J D,Liu L,Guo W,et al. Chemical structure of flavonols in relation to modulation of angiogenesis and immune-endothelial cell adhesion[J]. The Journal of Nutritional Biochemistry,2006,17(3):165-176.
[49]Orallo F,Camia M,Alvarez E,et al. Implication of cyclic nucleotide phosphodiesterase inhibition in the vasorelaxant activity of the citrus-fruits flavonoid(±)-naringenin[J]. Planta medica,2005,71(2):99-107.
[50]Kurowska E M,Borradaile N M,Spence J D,et al. Hypocholesterolemic effects of dietary citrus juices in rabbits[J]. Nutrition Research,2000,20(1):121-129.
[51]Lee S H,Park Y B,Bae K H,et al. Cholesterol-lowering activity of naringenin via inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase and acyl coenzyme A:cholesterol acyltransferase in rats[J]. Annals of Nutrition and Metabolism,1999,43(3):173-180.
[52]Jain M,Parmar H S. Evaluation of antioxidative and anti-inflammatory potential of hesperidin and naringin on the rat air pouch model of inflammation[J]. Inflammation Research,2011,60(5):483-491.
[53]Okuyama S,Minami S,Shimada N,et al. Anti-inflammatory and neuroprotective effects of auraptene,a citrus coumarin,following cerebral global ischemia in mice[J]. European Journal of Pharmacology,2013,699(1):118-123.
[54]Perche O,Vergnaud-Gauduchon J,Morand C,et al. Orange juice and its major polyphenol hesperidin consumption do not induce immunomodulation in healthy well-nourished humans[J]. Clinical Nutrition,2014,33(1):130-135.
[55]Milenkovic D,Deval C,Dubray C,et al. Hesperidin displays relevant role in the nutrigenomic effect of orange juice on blood leukocytes in human volunteers:a randomized controlled cross-over study[J]. PloS one,2011,6(11):e26669.
[56]Bertuzzi G,Tirillini B,Angelini P,et al. Antioxidative action of citrus limonum essential oil on skin[J]. European Journal of Medicinal Plants,2013,3(1):1-9.
[57]Heinzmann S S,Brown I J,Chan Q,et al. Metabolic profiling strategy for discovery of nutritional biomarkers:proline betaine as a marker of citrus consumption[J]. The American Journal of Clinical Nutrition,2010,92(2):436-443.
[58]Pujos-Guillot E,Hubert J,Martin J F,et al. Mass spectrometry-based metabolomics for the discovery of biomarkers of fruit and vegeTableintake:citrus fruit as a case study[J]. Journal of Proteome Research,2013,12(4):1645-1659.
[59]Inglese J,Auld D S,Jadhav A,et al. Quantitative high-throughput screening:a titration-based approach that efficiently identifies biological activities in large chemical libraries[J]. Proceedings of the National Academy of Sciences,2006,103(31):11473-11478.
[60]Zarebczan B,Pinchot S N,Kunnimalaiyaan M,et al. Hesperetin,a potential therapy for carcinoid cancer[J]. The American Journal of Surgery,2011,201(3):329-333.
[61]Swevers L,Kravariti L,Ciolfi S,et al. A cell-based high-throughput screening system for detecting ecdysteroid agonists and antagonists in plant extracts and libraries of synthetic compounds[J]. The FASEB journal,2004,18(1):134-136.
Advances in chronic diseases preventation and bioactive compounds evolution of citrus fruits
LI Yi1,2,XI Wan-peng1,2,WANG Bang-xiang3,*
(1.College of Horticulture and Landscape Architecture,Southwest University,Chongqing 401147,China;2.Key Laboratory of Horticulture Science for Southern Mountainous Regions,Ministry of Education,Chongqing 400715,China;3.Chongqing Productivity Promotion Center,Chongqing 401147,China)
The citrus bioactive compounds has been wildly concerned because of it’s function of medical and health care,such as antioxidant,anticancer,anti-cardiovascular disease,anti-inflammatory,anti-allergic and anti-microbial. The evolution of citrus bioactivity became a hot topic of the world. In this paper,the recent literature on the bioactivator and its role in chronic disease prevention and treatment were reviewed. The new advances made in the cure mechanism and related areas were summarized in an attempt to provide new information for future exploitation and utilization of rich citrus genetic resources in China.
citrus;bioactivity;chronic disease;evaluation method
2014-08-11
李怡(1990-),女,碩士在讀,研究方向:果品營養與質量安全。
*通訊作者:王邦祥(1978-),男,碩士研究生,助理研究員,主要從事農業科技研究。
國家自然科學基金項目(31171930);中央高校基本科研科研業務費專項(XDJK2014A014);重慶市“創新團隊建設計劃”項目(KJTD201333);重慶市農業科技成果轉化資金項目(cstc2014jcsf-nycgzhA80009)。
TS255.1
A
:1002-0306(2015)09-0366-06
10.13386/j.issn1002-0306.2015.09.072