耿煜, 王君恒,2,3*
1 中國地質大學(北京)地球物理與信息技術學院, 北京 100083 2 中國地質大學 地質過程與礦產資源國家重點實驗室, 北京 100083 3 地下信息探測技術與儀器教育部重點實驗室(中國地質大學,北京), 北京 100083
?
地球形成和演化過程中的分異能計算方法研究
耿煜1, 王君恒1,2,3*
1 中國地質大學(北京)地球物理與信息技術學院, 北京 100083 2 中國地質大學 地質過程與礦產資源國家重點實驗室, 北京 100083 3 地下信息探測技術與儀器教育部重點實驗室(中國地質大學,北京), 北京 100083
地球形成初期,構成地球的物質在組成上是大致均一的.目前地球的地核-地幔-地殼圈層結構,是由分異作用形成的.分異過程釋放的能量稱為分異能.Sorokhtin和Chilingarian等人從行星吸積的定義出發,導出了基于地球內部密度分布的勢能計算公式,計算出的分異能大小為1.698×1031J.本文采用計算球體勢能的思路,導出分異能計算的解析公式和數值計算公式,通過求取原始地球模型與均勻分層模型、PREM模型的勢能差計算分異能.兩種方法的計算結果分別為1.535×1031J和1.698×1031J.前者與Sorokhtin等的結果相近,后者與之相同.本文初步分析了方法間的異同以及造成結果偏差的主要原因.
重力分異; 勢能; 分異能; 吸積能; PREM
為說明地球的成因,國內外已有四十多種假說(王君恒等, 2010, 2012, 2013),其中較為普遍認同的有我國天文學家戴文賽首次提出的新星云假說(戴文賽和胡中為, 1980).該假說認為:地球的形成與太陽系形成密不可分,要經過“原始星云→星云盤→塵層→星子→行星”共5個階段(戴文賽和胡中為, 1979).
吸積是形成行星地球的最終階段.關于吸積有兩種不同的觀點,即均一吸積說和非均一吸積說(朱志祥, 1982).通常認為,均一吸積說可能性較大,即原始地球是一個接近均質的球體,并沒有明顯的分層現象(戴文賽和陳道漢, 1976).根據對地球外核成分的認識不同,均一吸積說又可分為金屬化核說和鐵核說(Schmidt, 1957).沖擊波實驗表明(朱志祥, 1980):外核物質的密度比鐵在外核條件下的密度小15%左右.所以外核物質除了鐵外,還應有少量的輕元素.較可能的輕元素是硫和氧.
但是,與原始地球不同,目前的地球內部分為地殼、上下地幔和內外地核等幾個大的圈層.這種圈層結構是由分異作用形成的(騰吉文, 2003).在地球自身引力和內部溫度的共同作用下,流動的輕物質上涌形成外層,流動的重物質下降形成內層,故構成了地球圈層物質的分異過程(Rubie et al., 2007).在圈層分異、調整過程中,地球內部能量的產生、遷移、轉化和消耗,是制約整體作用過程的決定要素.因此,分異能的計算是一個關鍵性問題.
Sorokhtin等(2010)從行星吸積的定義出發,導出了基于地球內部密度分布的勢能計算公式,計算出的分異能大小為1.698×1031J.Flasar和Birch (1973)計算了目前地球和原始地球兩種不同情形下地球吸積過程中重力所做的功,兩者的差1.66×1031J即為地球分異過程中損失的勢能.另有不同學者的估算(Lyubimov,1968; Vityazev,1973; Keondjian and Monin,1977)表明,地球分異過程中釋放的重力勢能在1.46×1031J到2×1031J之間.
本文采用計算球體勢能的思路,通過求取原始地球和目前地球的勢能差計算分異能.首先在均勻分層模型下推導出地球勢能的解析表達式,計算所得分異能大小為1.535×1031J,與Sorokhtin等的結果相近.該方法能夠以解析形式表達出地球的勢能,可以避免數值求和的繁瑣步驟,較前人方法相比計算更加簡潔.本文進一步在分層更加精細的PREM全球參考模型下,應用地球勢能的數值計算公式,得出的分異能大小為1.698×1031J,在所給精度范圍內與Sorokhtin等結果一致.該公式使用壓強表示地球的勢能,降低了由模型間差異所帶來的誤差,較前人方法具有更高的準確性.本文初步分析了方法間的異同以及造成結果偏差的主要原因.
Sorokhtin等(2010)認為:在數值上,地球的吸積能Ea等于其重力勢能的相反數(根據定義勢能總是負的).任何系統的勢能取決于該系統的構造格局,在此處討論的情形中則是地球內部的密度分布,表達式為
(1)
(2)

圖1 普遍接受的地球內部密度分布(1為目前地球,2為原始地球)Fig.1 Accepted density distribution within Earth(1 is present-day Earth;2 is primordial Earth)
其中U為地球的勢能;m(r)是半徑為r的球體內部所包含的地球質量;ρ(r)為地球在半徑r處的物質密度;γ=6.673×10-11m3·kg-1·s-2為引力常數;R=6.371×106m為地球的平均半徑.目前和原始地球內部密度分布見圖1(Naimark and Sorokhtin, 1977a,b).
為了確定原始地球的吸積能,明確其內部密度分布是必需的.該分布是建立在地球物質的平均組分(表1)及硅酸鹽和金屬沖擊壓縮數據(Naimark and Sorokhtin, 1977a,b)之上的.高壓下基于沖擊壓縮數據的造巖氧化物密度測定的目前技術具有2%~4%的精度(Sorokhtin et al., 2010).用這種方法測定出的原始地球內部密度分布見圖1(Naimark and Sorokhtin, 1977a,b).

表1 目前地球和原始地球的物質組成(Sorokhtin et al., 2010)Table 1 Composition of present-day Earth and primordial Earth matter (Sorokhtin et al., 2010)
地球質量:M=5.9772×1027g;地核質量:Mcore=1.9404×1027g;內核質量:Mcore1=0.1083×1027g;過渡帶質量:Mcore2=0.1299×1027g;外核質量:Mcore3=1.8321×1027g;地幔質量:Mm=4.0143×1027g;大陸地殼質量:Mcc=2.25×1025=0.0225×1027g.aRonov and Yaroshevsky, 1978;bRingwood, 1966; Dmitriyev, 1973;cUrey and Craig, 1953;dBarsukov, 1981.
使用式(1)及(2)來計算46億年前地球形成過程中釋放的吸積能.該能量(約等于其初始勢能)是巨大的:U(4.6)≈ -23.255×1031J.在數值上,重力分異能等于分異過程剛好開始(即約40億年前)之前均勻地球的勢能與目前分層地球的勢能差為(Sorokhtin et al., 2010)
Eg=U4.0-U0.0,
(3)
目前地球的勢能為-24.952×1031J(Sorokhtinetal., 2010).因此根據定義,重力分異的總能量為[-23.255-(-24.952)]×1031J=1.698×1031J.
除該方法外,Flasar和Birch(1973)計算了目前地球和原始地球兩種不同模型下地球形成過程中重力所做的功.分別基于Dziewonski和Gilbert(1972)的目前地球模型與Birch(1965)的原始地球模型,他們得出目前地球的吸積能為2.490×1032J,原始地球的吸積能為2.324×1032J.根據分異能的定義,兩者的差1.66×1031J即為地球分異過程中損失的勢能.
此外,Monteux等(2009)一起研究了行星分異的相關數值模型,給出了分異過程中的勢能損失計算公式為
(4)
其中Ω為行星的體積.雖然作者沒有給出具體的推導思路和地球分異能的計算結果,但是其推導可能應用了與Flasar和Birch (1973)相同的思路.
本文嘗試在均勻分層地球模型下通過球坐標積分推導出原始地球和目前地球的勢能表達式,分別計算原始地球和目前地球的勢能.再根據分異能的定義,用原始地球的勢能減去目前地球的勢能,得出分異能的大小.

圖2 密度均勻的原始地球模型Fig.2 A primordial Earth model which consists of a homogeneous mixture of the materials of the present core and mantle
作為近似,將原始地球看作密度均勻的標準球體,并以球心為原點建立球坐標系(圖2).設無限遠處的勢能U∞=0,原始、均勻地球的密度為ρ0,原始地球的半徑為R0,以原點為球心選取一個半徑為r、厚度為dr的薄球殼(0 dm=ρ0×4πr2dr, (5) 勢能為 dU4.0=-r×g(r)dm=-4πr3ρ0g(r)dr. (6) 從0到R0積分,得原始地球的總勢能為(Solomon, 1979) (7) 其中 (8) 式(8)是半徑為r處的重力加速度(Monteux et al., 2009).代入地球勢能的表達式,得: (9) 圖3 以地核的平均密度和地殼加地幔的平均密度代替實際密度分布的目前地球模型Fig.3 A present-day earth model in which its density distribution is substituted by the mean density of core and the mean density of crust and mantle 為了給出目前地球勢能的解析表達式,設理想的目前地球及其地核均為標準球體,并將地殼并入地幔之中.以地核的平均密度代替地核的實際密度分布,以地殼加地幔的平均密度代替地殼和地幔的實際密度分布.這樣,本文提出的目前地球模型內部是一個勻質的地核,外部則是地幔與地殼合在一起的殼幔層,構成“地核-殼幔層”的雙層結構. 以球心為原點建立球坐標系(圖3),設地核的平均密度為ρc,地核的平均半徑為Rc.類比原始地球勢能的推導方法,并參考式(7)的形式,寫出地核勢能的積分表達式為 (10) 其中 (11) 式(11)是半徑為r處的重力加速度(0 (12) 對于地殼和地幔,依舊參考式(7)的形式,寫出其勢能表達式為(Rc (13) 此時,r處的重力加速度由兩部分質量提供:一是地核質量,二是所取薄球殼包圍的地殼和地幔質量,即: (14) 代入整理得 (15) 將地核與地殼和地幔的勢能相加,便得到目前地球的勢能表達式為 U0.0=Uc+Um. (16) 假設原始地球和目前地球表面重力加速度相同,原始地球和目前地球的平均密度相同.計算所需數據(Anderson, 1989;JeffreysandSinger, 2009)如下:地球表面重力加速度g0=9.8156 m·s-2;原始、均勻地球的密度ρ0=5.514×103kg·m-3;原始地球的半徑R0=6.355×106m;目前地球的半徑R=6.371×106m;地核的平均密度ρc=10.76×103kg·m-3;地核的平均半徑Rc=3.485×106m;地殼加地幔的平均密度ρm=4.400×103kg·m-3.計算所得原始地球的勢能為U4.0≈ -22.131×1031J,目前地球的勢能為U0.0≈ -23.665×1031J.于是根據定義,分異能為Eg=U4.0-U0.0≈[(-22.131)-(-23.665)]×1031J=1.535×1031J. 作為對地核-殼幔層雙層結構的改進,可以在內核—外核—下地幔—上地幔—地殼的五層結構下推導并計算目前地球的勢能.但是,在模型被進一步細化之后,以解析形式給出的地球勢能表達式非常復雜,從而給均勻分層解析法的推導和計算帶來不便.因此,本文僅給出在地核-殼幔層模型下目前地球勢能的推導與計算過程. 總結前人的計算公式(1)、(2)、(3)及(4)發現,他們均采用地球內部密度分布表示出地球的吸積能.經比較,不同的地球模型(Bolt, 1957; Bullen, 1965; Dziewonski et al., 1975; Martinec et al., 1986)在壓強分布上的差異要低于密度分布上的差異,特別是在地心附近.根據計算,在深度為6371 km處,Bullen地球密度模型(Bullen, 1938)所給出的壓強數值相對于PREM模型(Dziewonski and Anderson, 1981)偏小約3.53%,密度偏小約7.02%.可見,若能以壓強表示出地球的勢能,則能夠降低因模型間差異而帶來的誤差. 對于一個密度僅為半徑函數的處于流體靜力平衡狀態下的球體,勢能可以表達為多種不同的形式(王君恒等, 2010, 2012, 2013): φdmr (17) 其中 (18) (19) 總質量為M,球體的半徑為R,壓強為P,密度為ρ.當壓強P為關于r的已知函數時,最后一種形式對于勢能的計算是較為方便的.并且從不同密度模型中壓強的差異較小這一事實可以推知:若使用地球內部半徑和壓強分布計算目前地球的勢能,在不同密度模型下計算出的勢能差異不會過大.對于原始地球的勢能,本文將采用Birch的原始地球模型(表2)進行計算;對于目前地球的勢能,本文將采用Dziewonski和Anderson的初步地球參考模型(表3)進行計算. 將式(17)改寫為求和形式為 (20) 其中i為由內向外逐層所做的編號,N為所用模型的數據長度,即可用程序逐步完成該計算.在編寫了程序后,本文計算出原始地球的勢能為U4.0≈ -23.338×1031J(詳見表4),目前地球的勢能為U0.0≈ -25.036×1031J(詳見表5).于是按照定義,分異能Eg=U4.0-U0.0≈ [(-23.338)-(-25.036)]×1031J=1.698×1031J. 在本文所選取的原始和地球模型下,PREM數值求和法得出了與Sorokhtin等相同的結果.由于選用壓強可以減低不同模型間差異帶來的誤差,當不同模型間密度分布差異較大時,該方法比Sorokhtin等的方法具有更高的準確性. 表2 Birch原始地球模型下半徑、密度和壓強分布(Birch,1965)Table 2 Radius,density and pressure distribution under Birch primordial earth model (Birch,1965) 表3 PREM模型下半徑、密度和壓強分布(Dziewonski and Anderson,1981)Table 3 Radius,density and pressure distribution under preliminary reference earth model (Dziewonski and Anderson,1981) 續表3 表4 Birch原始地球模型下勢能的計算步驟Table 4 Calculation procedures of potential energy under Birch primordial earth model 續表4 表5 PREM模型下勢能的計算步驟Table 5 Calculation procedures of potential energy under preliminary reference earth model 續表5 (1) 不同于前人的吸積做功法,均勻分層解析法能夠以解析形式表達出原始地球和目前地球的勢能,計算過程簡潔,避免了數值求和的繁瑣步驟. (2) 在實際情況下,地核、地幔和地殼的密度隨半徑增大而逐漸減小.這使得均勻分層模型下計算出的目前地球勢能比實際情況偏大,該偏差進一步導致了分異能的計算結果偏小. (3) 由于分層更多的地球模型會給均勻分層解析法的推導和計算帶來困難,本文只給出地核-殼幔層雙層結構下目前地球勢能的推導與計算過程. (4) 考慮到不同的地球模型在壓強分布上的差異小于密度分布上的差異,PREM數值求和法采用了壓強表達地球的勢能,可降低由模型間差異所帶來的誤差. (5) 在本文所選取的原始和目前地球模型下,PREM數值求和法得出了與Sorokhtin等的方法相同的結果.并且當不同模型間密度分布差異較大時,該方法比Sorokhtin等的方法具有更高的準確性. (6) 目前地球的分異活動仍沒有停止,只是分異不再是形成核-幔-殼結構的全面大規模活動.在此過程中,一部分分異能被地球的彈性壓縮所消耗,絕大部分分異能轉化為地球內部的熱量. (7) 后續研究中深入探討的主要內容有:地球演化過程中的其他物理機制(如放射性元素的衰變等)能夠為地球提供的熱能,理論上這些熱能總共能使地球升高的溫度;分異能的釋放速率與釋放總量隨時間的變化規律等重要問題. Anderson D L. 1989. Theory of the Earth. Boston, MA: Blackwell Scientific Publications, 366.Barsukov V L. 1981. Outlines of Comparative Planetology. Moscow: Izd-vo Nauka, 184-185. Birch F. 1965. Energetics of core formation.JournalofGeophysicalResearch, 70(24): 6217-6221.Bolt B A. 1957. Earth models with continuous density distribution.GeophysicalJournalInternational, 7(6): 360-368. Bullen K E. 1938. Note on the density and pressure inside the Earth.TransactionsandProceedingsoftheRoyalSocietyofNewZealand, 67: 122-124. Bullen K E. 1965. Models for the density and elasticity of the Earth′s lower core.GeophysicalJournalInternational, 9(2-3): 233-252. Dai W S, Chen D H. 1976. Critical review of theories on the origin of the solar system.ActaAstronomicaSinica(in Chinese), 17(1): 93-105. Dai W S, Hu Z W. 1979. On the origin of the asteroids.ActaAstronomicaSinica(in Chinese), 20(1): 33-42. Dai W S, Hu Z W. 1980. On the origin of the solar system.ScienceChina(in Chinese), (3): 254-266. Dmitriyev L V. 1973. Mid-Oceanic ridge bedrock geochemistry and petrology[Ph. D. thesis]. Moscow: Moscow University, 45. Dziewonski A M, Gilbert F. 1972. Observations of normal modes from 84 recordings of the Alaskan earthquake of 1964 March 28.GeophysicalJournalInternational, 27(4): 393-446. Dziewonski A M, Hales A L, Lapwood E R. 1975. Parametrically simple Earth models consistent with geophysical data.PhysicsoftheEarthandPlanetaryInteriors, 10(1): 12-48. Dziewonski A M, Anderson D L. 1981. Preliminary reference Earth model.PhysicsoftheEarthandPlanetaryInteriors, 25(4): 297-356. Flasar F M, Birch F. 1973. Energetics of core formation: A correction.J.Geophys.Res., 78(26): 6101-6103. Jeffreys H, Singer S F. 2009. The Earth: Its origin, history and physical constitution.PhysicsToday, 12(9): 61-62. Keondjian V P, Monin A S. 1977. Calculations on the evolution of the planetary interiors.Tectonophysics, 41(1-3): 227-242. Lyubimov E A. 1968. Thermal Properties of the Earth and the Moon. Moscow: Nauka. Monteux J, Ricard Y, Coltice N, et al. 2009. A model of metal-silicate separation on growing planets.EarthandPlanetaryScienceLetters, 287(3-4): 353-362. Naimark L M, Sorokhtin O G. 1977a. Energy of Earth′s Gravity Differentiation.TectonicsofLithosphericPlates, 42-56. Naimark L M, Sorokhtin O G. 1977b. The density distribution in the Earth′s model with the herzolite mantle composition and iron oxide core.TectonicsofLithosphericPlates, 28-41. Ringwood A E. 1966. The chemical composition and origin of the Earth.AdvancesinEarthScience, 276-356. Ronov A B, Yaroshevsky A A. 1978. Chemical Composition of the Earth′s Crust and of her Shells. Moscow: Tectonosphere of Earth, Nedra, 376-402. Rubie D C, Nimmo F, Melosh H J. 2007. Formation of Earth′s core. ∥Schubert G ed. Treatise on Geophysics. Oxford: Elsevier, 51-90. Schmidt O Y. 1957. Four Lectures on the Theory of the Origin of the Earth. Izd-vo AN SSSR. Solomon S C. 1979. Formation, history and energetics of cores in the terrestrial planets.PhysicsoftheEarthandPlanetaryInteriors, 19(2): 168-182. Sorokhtin O G, Chilingarian G V, Sorokhtin N O. 2010. Evolution of Earth and Its Climate: Birth, Life and Death of Earth. St. Louis, MO: Elsevier, 160-164. Teng J W. 2003. Introduction to Solid Geophysics (in Chinese). Beijing: Earthquake Press, 80-91. Urey H C, Craig H. 1953. The composition of the stone meteorites and the origin of the meteorites.GeochimicaetCosmochimicaActa, 4(1-2): 36-82. Vityazev A V. 1973. On the energy of gravitational differentiation in the Earth.Izv.Akad.NaukSSSR,Ser.Fiz.Zemli, (10): 86-88. Wang J H, Guo L, Wang J N, et al. 2010. The change of Earth oblateness in its history.ProgressinGeophysics(in Chinese), 25(1): 143-150, doi: 10.3969/j.issn.1004-2903.2010.01.021. Wang J H, Li X J, Zhang Y Y, et al. 2013. The lower limit of variation of the Earth′s oblateness in geological epoch.ChineseJ.Geophys. (in Chinese), 56(3): 842-847, doi: 10.6038cjg20130313.Wang J H, Zhang Y Y, Xin Z X, et al. 2012. Upper limit variation of the Earth′s Oblateness in geological epoch and impact analysis on the Dai Wensai′s Nebular Hypothesis.Geoscience(in Chinese), 26(6): 1168-1174. Zhu Z X. 1980. Several hypotheses about the mantle and core formation.ChineseJournalofNature(in Chinese), 3(11): 852-855, 810. Zhu Z X. 1982. Some problems on the origin of the Earth.ActaGeophysicaSinica(in Chinese), 25(2): 172-180. 附中文參考文獻 戴文賽, 陳道漢. 1976. 太陽系起源各種學說的評價. 天文學報, 17(1): 93-105. 戴文賽, 胡中為. 1979. 論小行星的起源. 天文學報, 20(1): 33-42. 戴文賽, 胡中為. 1980. 論太陽系的起源. 中國科學, (3): 254-266. 騰吉文. 2003. 固體地球物理學概論. 北京: 地震出版社, 80-91. 王君恒, 郭雷, 王健楠等. 2010. 地球扁率在其歷史上的變化. 地球物理學進展, 25(1): 143-150, doi: 10.3969/j.issn.1004-2903.2010.01.021. 王君恒, 李新均, 張煜穎等. 2013. 地球扁率在地質歷史上的變化下限. 地球物理學報, 56(3): 842-847, doi: 10.6038cjg20130313. 王君恒, 張煜穎, 辛志翔等. 2012. 新星云假說下地球扁率變化上限及影響因素. 現代地質, 26(6): 1168-1174. 朱志祥. 1980. 關于地幔和地核形成的幾種假說. 自然雜志, 3(11): 852-855, 810. 朱志祥. 1982. 關于地球起源的幾個問題. 地球物理學報, 25(2): 172-180. (本文編輯 張正峰) Research on calculation methods of differentiation energy during the formation and evolution of the earth GENG Yu1, WANG Jun-Heng1,2,3* 1SchoolofGeophysicsandInformationTechnology,ChinaUniversityofGeosciences,Beijing100083,China2ChinaUniversityofGeosciences,StateKeyLaboratoryofGeologicalProcessesandMineralResources,Beijing100083,China3KeyLaboratoryofGeo-detection(ChinaUniversityofGeosciences,Beijing),MinistryofEducation,Beijing100083,China According to Dai Wensai′s nebular hypothesis, the formation of the Earth was closely related to the formation of the solar system, which can be described as “primordial nebular-protoplanetary disc-konisphere-planetesimal-planet”. Accretion was the last stage during the formation of the Earth. Generally considered, homogeneous accretion has a greater possibility, which means that the primordial Earth was a nearly homogeneous body without significant stratification. However, different from the primordial Earth, the present-day Earth is divided into crust, upper mantle, lower mantle, outer core and inner core. This layering structure was formed by the differentiation process. During the differentiation and adjustment of the layers, the generation, migration, conversion and consumption of the Earth′s internal energy was the decisive factor that restricted the whole process. Therefore, the calculation of differentiation energy is a pivotal issue.Starting from the definition of planet accretion, Sorokhtin et al. derived a potential calculation formula which is based on the density distribution within the Earth, and the calculated differentiation energy is 1.698×1031J. Flasar and Birch calculated the work done by gravity in the process of the Earth′s accretion in the light of primordial Earth and present-day Earth. The difference between these two quantity, 1.66×1031J is the potential energy loss in the process of the Earth′s differentiation. Estimates given by other authors suggest that the gravitational potential energy released during the process of the Earth′s differentiation is between 1.46×1031J and 2×1031J.The idea of calculating the potential energy of a sphere was adopted in this paper, and differentiation energy was calculated by evaluating the potential energy difference between primordial Earth and present-day Earth. Firstly, the analytic formula of the Earth′s potential energy was derived based on a uniformly layered Earth model. The calculated differentiation energy is 1.535×1031J which is close to the result given by Sorokhtin et al. Further, using a more sophisticated model, the preliminary reference Earth model (PREM), and by applying the numerical formula of the Earth′s potential energy, the differentiation energy was calculated to be 1.698×1031J, which is the same as the result of Sorokhtin et al. within the given precision.Different from the “accretion work method” in previous studies, the“uniform layered analytic method” gives the analytic formula for the potential energy of primordial Earth and present-day Earth, from which the tedious steps of numerical summation were avoided. In the actual case, the density of core, mantle and crust decreases with radius increasing. This will make the potential energy of present-day Earth under uniform layered Earth model larger than that in the actual case, which can further make the calculated differentiation energy small. Since an Earth model with more layers can bring inconvenience to the derivation and calculation of the “uniform layered analytic method”, only the derivation and calculation on the “core-mantle two-layer structure” was given in this paper.Considering that the difference of pressure is smaller than the difference of density between different Earth models, the “PREM numerical summation method” uses pressure instead of density to describe the Earth′s potential energy, which can reduce the error brought by the differences between models. Using the Earth models adopted in this paper, the “PREM numerical summation method” gives the same result as the method of Sorokhtin et al. Moreover, when density distributions given by different Earth models vary significantly, this method can lead to more reliable results than the method of Sorokhtin et al.At present, the Earth′s differentiation has not yet stopped, but it is no longer comprehensive and large-scale activity which forms the core-mantle-crust structure. In this process, a portion of the differentiation energy was consumed by the Earth′s elastic compression, while most of it was converted into the Earth′s internal heat. Subsequent research should focus on the heat sources provided by other physical processes during the evolution of the Earth and other relevant issues, such as the decay of radioactive elements, the total temperature the Earth raised by absorbing this heat, and the releasing rate and releasing amount of differentiation energy with time. Gravitational differentiation; Potential energy; Differentiation energy; Accretion energy; PREM 10.6038/cjg20151009. Geng Y, Wang J H. 2015. Research on calculation methods of differentiation energy during the formation and evolution of the earth.ChineseJ.Geophys. (in Chinese),58(10):3530-3539,doi:10.6038/cjg20151009. 耿煜, 男, 1989年生, 天津人, 中國地質大學(北京)地球物理與信息技術學院,碩士,目前在美國孟菲斯大學地震研究中心,主要從事天然地震研究. E-mail: ygeng1@memphis.edu *通訊作者 王君恒, 男, 1962年生, 山東青島人, 博士, 中國地質大學(北京)地球物理與信息技術學院副教授, 主要從事應用地球物理和理論地球物理研究. E-mail: w1128@cugb.edu.cn 10.6038/cjg20151009 P311 2015-01-06,2015-10-08收修定稿 耿煜,王君恒. 2015. 地球形成和演化過程中的分異能計算方法研究.地球物理學報,58(10):3530-3539,

4 PREM模型下的數值求和法








5 結論