馬建峰,李文峰
(浙江富春江水電設備有限公司,杭州 310013)
文章編號:1006—2610(2015)01—0069—04
水輪發電機功率擺動的分析和處理
馬建峰,李文峰
(浙江富春江水電設備有限公司,杭州 310013)
某機組在偏離最優工況運行時,進入尾水管的水流夾帶著空化氣泡在離心力的作用下形成同水流共同旋進的尾水渦帶,并在周期性非平衡因素的影響下產生偏心。尾水管壓力脈動頻率和發電機在電網中的自然振蕩頻率相近引起輸出功率劇烈擺動。采用CFD分析確定尾水管內安裝導流板方案以及有限元方法分析導流板的剛強度,最終圓滿處理功率擺動問題。
功率擺動;壓力脈動頻率;CFD;有限元
某電站機組在進行AGC(自動發電控制)試驗時,發現機組在50~60 MW有功負荷運行時,輸出功率劇烈擺動,超出容許擺動范圍,機組無法并網。實測分析發現:發電機組和輸電線路構成的系統電自振頻率與尾水管壓力脈動頻率接近,推測功率擺動是由電功率諧振引起。本文采用CFD(計算流體動力學)方法對從蝸殼進口到尾水管出口的水輪機全部流道進行了三維非定常湍流水力計算,得到了尾水管壓力脈動頻率,驗證了我們的推測。我們對原型機、加長泄水錐、在尾水管內安裝阻尼柵和導流板4種方案進行了對比計算,確定出最優處理方案,并將該方案下水力計算得到的水壓力分布作為邊界條件加載到結構件上,采用有限元方法進行穩態流固耦合剛強度計算優化、固有頻率計算和疲勞計算,從而確定最終處理方案。
對機組進行實測發現:機組有功從65 MW減小到55 MW時出現有功擺動,有功擺動峰值為4.2 MW,同時尾水壓力脈動和蝸殼壓力脈動也隨之增大。負荷從55 MW調整到45 MW時,有功擺動峰值減小為1.9 MW。存在以下規律:機組在45~60 MW之間時,有功存在比較大的擺動,55 MW達到最大值,有功擺動達到峰值,詳見圖1。
2.1 功率擺動的幾種常見原因
(1) 調速器故障
調速器故障產生導葉開度擺動,造成功率擺動。
機組現場在55 MW時把調速器切至手動,鎖死導葉開度,發現功率擺動現象沒有任何變化,從而排除了調速器故障的可能性。

圖1 各工況點有功擺動范圍
(2) 尾水管渦帶引起功率擺動
當機組尾水管壓力脈動頻率與發電機所在電網中的自然振蕩頻率相同或接近時,有可能引起功率擺動,影響電網動態穩定。
現場實測分析發現機組在45~60 MW之間存在水力渦帶振動區,55 MW時尾水管處壓力脈動主頻為1.0 Hz,與有功擺動的頻率1.1 Hz相近,此時水導擺度達到最大值。同時,機組有功擺動區間和補氣區間呈對應關系,有功擺動和尾水壓力脈動有一定相關性。因此我們推測有功擺動可能由尾水管渦流引起。
2.2 尾水管渦帶引起功率擺動的機理
現場實測,機組在55 MW運行時,尾水管處壓力脈動主頻為1.0 Hz。根據下式,得到發電機電自振頻率:
(1)
式中:f0為發電機額定轉速轉頻;H為發電機和水輪機聯合慣性常數。Prpu為發電機功率角曲線上斜率的標幺值。額定轉速214.3 r/min,功率因數為0.85,橫軸同步電抗為1.006。
計算可得:f電=1.001 5 Hz
因此,電自振頻率與現場實測機組在55 MW時尾水管處壓力脈動主頻基本一致,可以確定有功擺動是由尾水管渦流引起。
當尾水管渦帶頻率和發電機在電網中的自然振蕩頻率一致,造成導葉開度和發電機有功功率相對擺動最大,由此產生定子感應電勢與系統電壓出現滑差,發電機時而發出有功,時而吸收有功。無功則是倒進的。監測儀表顯示為:定子電流和有功功率大幅擺動,此時機組發出明顯的異聲和振動。
2.3 尾水管低頻壓力脈動的消振方案
首先需要明確尾水管渦帶產生機理。渦帶能量可由式(2)表示:
(2)
式中:P為脈動壓力;Cu為圓周分量;ρ為水的密度;R為尾水管半徑;e為渦帶偏心距。
機組在最優工況運行時,轉輪中的水流接近法向出流,因此轉輪出口處的環量很小,接近于零。當機組非最優工況時,由于水輪機流量的減小,水流在轉輪出口產生具有與轉輪旋轉方向相同的圓周分量,導致在轉輪出口的正環量增加。當環量達到一定程度,水流在尾水管中心部位產生一個與轉輪旋轉方向相一致的偏心渦帶。
從式(2)可以看出,減小尾水管渦帶有2種途徑:一是減小出口圓周速度;二是減小渦帶偏心距e。據此,本文提出了延長泄水錐、尾水管內安裝阻尼柵以及尾水管內安裝導流板這3種對策方案(結構如圖2所示),并進行了CFD水力計算。最終確定減振方案,減弱渦帶的擺動幅值,改變壓力脈動頻率,減低尾水管中渦帶中心的渦量,達到對整個水輪機機組減振的目的。

圖2 消除尾水管渦帶的方案圍
3.1 CFD模擬尾水管渦帶頻率
本文采用CFD方法對從蝸殼進口到尾水管出口的水輪機的全部流道進行了三維非定常湍流水力計算。時間步長取為轉輪轉動周期的1/12。
全流道幾何模型如圖3所示。水輪機參數如下:轉輪葉片數z=13,固定導葉Zc=24,活動導葉數Zg=24。在尾水管內設置了壓力脈動監測點,測點位置如圖4所示。對比分析了各種對策方案的尾水管內的流動狀況與壓力脈動性能的影響,并采用快速傅里葉變換法( FFT) 對各個測點采集的壓力脈動信號進行了詳細地比較和分析。

圖3 全流道幾何模型圖

圖4 尾水管監測點圖
為了驗證數學模型的正確性,首先將原型機計算模擬結果與機組實測值進行比較,見表1。

表1 原型機實測與數學模型CFD計算結果對比表
從表1中可以看出,原型機在55 MW負荷工況監測點壓力脈動主頻的數值模擬結果與真機實測結果吻合,壓力脈動頻譜見圖5所示。

圖5 尾水管壓力脈動頻譜圖
CFD計算結果顯示,在該負荷工況下,尾水管內有一個明顯的呈螺旋狀偏心渦帶(參見圖6)。該渦帶旋轉方向和轉輪旋轉方向相同,計算工況下其引起的壓力脈動主頻為1.088 Hz,約為轉輪主頻的0.3倍,屬于低頻壓力脈動。以上結論,驗證了CFD數學模型的可靠性。

圖6 不同時刻尾水渦帶圖
3.2 各個消振方案CFD數學模型計算
各個方案的消振尾水渦帶效果,如圖7所示:

圖7 消除尾水管渦帶的方案效果圖
(1) 采用加長泄水錐后,監測點上最低壓力值有所上升,負壓區減小,但渦帶的偏心距并無明顯變化,尾水渦帶與原型相比壓力脈動和壓力脈動幅值無顯著變化;
(2) 在尾水管內添加阻尼柵后,使得由轉輪出口進入尾水管內的水流圓周速度減小,監測點上的負壓區消失,并且,尾水渦帶與原型頻率相比有較明顯的改善,但壓力脈動幅值不降反升。
(2) 在尾水管內添加的導流板,渦帶的偏心距減小,尾水渦帶能量降低,尾水管沒有形成完整的渦帶,消振效果最為顯著,壓力脈動幅值相對原型機明顯減小,頻率也遠離了發電機的電自振頻率。
表2為各個方案的主頻和振幅結果統計。

表2 各種方案數學模型CFD結果表
從表2可知,設置導流板方案的消振效果最佳,因此最終選定該方案。
3.3 流固耦合結構計算
確定使用導流板方案后,對導流板進行剛強度計算,有限元模型如圖8所示。

圖8 有限元模型圖
施加載荷是CFD水力計算所得水壓力分布,通過workbench無縫加載到導流板結構實體上,得到精確的結構剛強度計算結果,詳見圖9。

圖9 CFD水壓分布加載圖
導流板材料采用Q345C,厚度小于16 mm時,屈服強度σs=345 MPa。圖10所示應力峰值為75.564 MPa,平均應力小于50.391 MPa,兩者均小于許用應力1/3σs,最大位移為1.48 mm,,滿足剛強度的要求。

圖10 綜合位移和綜合應力圖
為了保證導流板和尾水管渦帶不發生共振,對導流板進行了模態分析,導流板的第1階頻率見圖11,第1階頻率為45.38 Hz,遠遠大于渦帶的頻率,沒有共振風險。

圖11 導流板頻率計算圖
3.4 疲勞分析
已知Q345C抗拉強度疲勞極限為289 MPa,因尺寸效果引起的疲勞極限下降率0.8,表面狀態、腐蝕作用引起的疲勞極限下降率0.6,所以淡水中的許用疲勞極限為138.72 MPa,取疲勞安全率1.5,則許用疲勞極限為92.5 MPa。導流板的應力振幅為37.5 MPa,遠小于138.72 MPa的許用疲勞極限,不會發生疲勞破壞。
安裝導流板后,機組順利投入AGC運行,機組在55 MW負荷工況運行時,輸出功率擺動遠低于2%的上限值,取得良好的效果。
為了解決機組在部分負荷下功率大幅擺動的問題,本文采用CFD數學模擬方法模擬了原型機、加長泄水錐、在尾水管內安裝阻尼柵和安裝導流板4種方案,對比分析了尾水管壓力脈動主頻和振幅,確定了尾水管內安裝導流板方案。然后進行流固耦合結構分析保證導流板滿足剛強度和疲勞設計要求。安裝上導流板后,機組的功率擺動大幅減小,順利投入AGC運行,事故處理成功。
[1] 馬震岳.水輪發電機組動力學 [M].大連理工大學出版社,2003.
[2] 白延年.水輪發電機設計與計算 [M].北京:機械工業出版社,1982.
[3] 龔守志.導流柵防止水輪機尾水管內渦帶壓力脈動的試驗研究與應用經驗[J].水力發電學報,1984,(3):45-52.
[4] 王金生,龔守志.獅子灘水電站水輪發電機功率擺動的分析和處理[J].水力發電,1982,(9):43-46.
[5] 龔守志,黃凌.應用導流冀柵消除水輪機尾水管渦帶壓力脈動的兒個問題 [J].水利水電技術,1987,(7):33-36.
Analysis and Handling of Generator Power Swing
MA Jian-feng, LI Wen-feng
(Zhejiang Fuchunjiang Hydropower Equipment Co.,Ltd, Hangzhou 310013,China)
Under the action of the centrifugal force, the water flow entering into the draft tube forms tail water vortex zone jointly running in vortex with the flow while one unit operates at a deviated optimum operation condition. Impacted by the periodic unbalance factors, eccentricity is caused by the flow. The output power swings violently because the pressure fluctuation frequency of the draft tube and the natural oscillation frequency of the generator in the grid are close. By CFD analysis, the guide vane is proposed to install in the draft tube as well as the strength of the guide vane is analyzed by the finite element method. Finally, the power swing is handled
power swing; pressure fluctuation frequency; CFD; finite element
2014-07-09
馬建峰(1982- ),男,浙江省杭州市人,工程師,從事水輪發電機設計工作.
TV734.2+1
A
10.3969/j.issn.1006-2610.2015.01.018