江連祥,戴澤平
(皖南醫學院附屬弋磯山醫院麻醉科,安徽蕪湖241000)
?
食欲素能神經系統網絡及其相互作用的生理功能
江連祥,戴澤平*
(皖南醫學院附屬弋磯山醫院麻醉科,安徽蕪湖241000)
摘要食欲素是下丘腦神經元分泌產生的一種神經多肽。起初,認為其是攝食行為的調節因子,但是,現在主要將它看作睡眠-覺醒周期的關鍵性神經調質。食欲素能神經元雖存在下丘腦外側區域(lateral hypothalamic area,LHA),但其發出的神經纖維可投射到腦廣泛區域,與大腦邊緣系統、視交叉上核(suprachiasmatic nucleus,SCN)及腹外側視前區(ventrolateral preoptic nucleus,VLPO)神經元均有著緊密的聯系,且能通過彼此間的相互作用發揮著多種生理功能。食欲素能神經活動的調節除受谷氨酸、甘氨酸、多巴胺等神經遞質的影響外,食欲素能神經元也受到其微環境中代謝物質的影響,包括胃促生長激素、瘦素、血糖水平等??傊?,大量研究結果都表明,食欲素能通過感受內、外環境的變化,調整自身狀態,維持覺醒,適應生存。本文主要描敘了食欲素及其受體的基本生物學特性,闡述了食欲素能神經元的傳入與傳出以及相互作用間的功能,分析了食欲素能神經活動的影響因素。
關鍵詞食欲素;睡眠;神經系統;食欲素能神經元
食欲素(Orexin)能神經元主要存在于下丘腦外側區域(lateral hypothalamic area,LHA),發出的神經纖維能廣泛投射到腦其他部位,提示食欲素在生理功能上具有多樣性[1]。不過,食欲素能神經元雖說是廣泛的投射,但在與覺醒的激發、維持密切關聯的中縫背核(dorsal raphe,DR),藍斑(locus coeruleus,LC)和乳頭狀核(tuberomammillary nucleus,TMN),食欲素能神經元密集大量投射更為學者注意[2]。也因此,起初被認為是攝食行為的調節因子——食欲素,現在主要將它看作為睡眠-覺醒周期的關鍵性神經調質。另外,大量的研究還揭示了食欲素能系統在自主神經系統[3]、獎賞、應激系統[4]方面所發揮的作用。本文主要綜述食欲素及其受體的基本生物學特性,食欲素能神經元的傳入和傳出及神經元間相互作用的生理學功能以及影響食欲素能神經元活動的主要因素。
1食欲素及其受體
食欲素是偶然間被發現的一組神經多肽[5],主要由下丘腦神經元產生。前體食欲素經水解加工產生2種多肽,即食欲素A(Orexin A )和食欲素B(Orexin B)。Orexin A是含有33個氨基酸的多肽(3.5 ku),其分子結構在哺乳類動物中具有高度的保守性,提示Orexin具有重要的生物學功能。鼠Orexin B是含有28個氨基酸的多肽(2.9 ku),與Orexin A 有46%的相同序列[6]。
食欲素受體有2種亞型,Ox1R和Ox2R。二者在分布區域上有著明顯的不同,Ox1R mRNA廣泛分布在海馬、丘腦室旁核(paraventricular hypothalamic nucleus,PVN)、下丘腦腹內側核、DR、LC等許多大腦區域,而Ox2R mRNA互補性地聚集在大腦皮層、海馬、DR以及一些下丘腦核群,如:PVN、TMN和腹側乳頭狀核。Ox2R為非選擇性受體,可相當程度地激活Orexin A 和Orexin B,而Ox1R為選擇性受體,與Orexin A的親和力高于Orexin B[5]。Ox1R和Ox2R 均為七分子跨膜G蛋白偶聯受體,二者激活 G蛋白后通過不同的途徑介導信號的轉導[7]。Ox1R能激活腺苷酸環化酶(AC),使cAMP水平升高,通過級聯反應,促進糖皮質激素的分泌。Ox2R能激活依賴Ca2+-PLC途徑的級聯反應,促進人嗜鉻細胞瘤細胞分泌兒茶酚胺。食欲素也能與其他神經遞質(強啡肽、谷氨酸等)共存,協同信號的傳導。如,食欲素就能通過促進突觸末梢谷氨酸的釋放來加強局部谷氨酸信號的轉導[8]。
2食欲素能神經元的傳入
2.1食欲素傳入神經元的功能解剖食欲素能神經元雖存在下丘腦外側區域(laterial hypothalamz area,LHA),卻廣泛投射不同腦區。Sakurai等[9]利用轉基因鼠模型,分離出一些與食欲素能神經元相關聯的腦區,包括基底前腦的膽堿能神經元,腹外側視前核(ventrolateral preoptic are,VLPO)的γ-氨基丁酸能神經元以及中縫核、旁正中核血清素能神經元。食欲素能神經元的神經活動也受到諸如杏仁核、下邊緣皮層、伏核殼部、終紋床核(bed nucleus of stria terminalis,BST)這些與情感密切聯系的腦部核團的支配。Yoshida 等[10]利用霍亂毒素B進行食欲素能神經元的示蹤走向發現,在側間隔、下丘腦視前區、BST和后丘腦區域標記細胞分布較為密集,且下丘腦優先支配內側和穹隆周區食欲素能神經元。
所以食欲素能神經元結構和功能的多樣性,與食欲素能神經元的多元投射和多分支共存密不可分。在現有的技術下,我們不僅要解剖食欲素能神經環路的結構,還要研究分析神經元在功能上的聯系。
2.2下丘腦神經元的傳入LHA,食欲素能神經元主要存在的腦區,是攝食、體重調節的關鍵部位。研究發現,下丘腦支配著LHA的神經活動,且這些支配的神經纖維較多地投射到食欲素能神經元。所以,三者在下丘腦內部構成了一個重要的中樞環路,控制著能量的均衡。如:弓狀核NPY/AgRP神經元,是由弓狀核神經細胞產生的2種蛋白神經肽Y(neuropeptide Y,NPY)和南美豚鼠相關蛋白(agouti-related protein,AgRP)而命名的,其發出的神經纖維能投射到食欲素能神經元,分泌的NPY能借助這一環路協調機體的攝食行為[11]。另外,食欲素能神經元也能表達NPY受體。向LHA內注射NPY激動劑,能增加食欲素能神經元類似FOS的免疫蛋白反應[12],表明NPY可興奮食欲素能神經元的活動。電生理研究發現,向LHA區直接注射NPY減少了食欲素能神經元棘突放電頻率,使突觸膜電位發生了超極化[13]。
2.3大腦邊緣系統神經元的傳入大腦邊緣系統參與人類情感活動的表達。當機體受到強烈的情緒刺激時常因肌張力的突然減退引發猝倒現象,而嗜睡患者也較易發生猝倒[14]。既然以往研究發現食欲素能神經元的損壞能夠誘發嗜睡癥狀,那么邊緣系統也就該能支配食欲素能神經元,同時食欲素能神經元在處理情感應激方面也應發揮著一定的作用。當把食欲素注射到貓腦橋被蓋核(pedunculopontine tegmental nucleus,PPT)時,貓在快動眼睡眠期間表現出的肌張力減退效應就會被抑制[15]。
邊緣系統對食欲素能神經元的支配可能調解著情緒激發和恐懼的應激反應。敲除前后食欲素基因大鼠在清醒和自由移動條件下表現出的心血管和體動反應均較弱[16]。研究發現:食欲素神經元損毀的orexin/ataxin-3鼠減弱了由高頻壓力通氣引發的血壓、心率的變化[17]。
2.4下丘腦視前區神經元的傳入下丘腦視前區,尤其是腹外側視前區(ventrolateral prooptic nucleus,VLPO),對非快動眼睡眠起始/維持起著至關重要的作用[18]。VLPO發出的抑制性神經纖維能投射到TMN組胺能系統,LC去甲腎上腺素能系統,DR血清素能系統以及膽堿能系統,從而抑制了促覺醒神經遞質的釋放。
研究發現,VLPO區域GABA能神經元能發放信號支配食欲素能神經元的活動[9-10]。GABAA受體激動劑(蠅蕈素)和GABAB受體受體激動劑(巴氯芬)均能較強地抑制食欲素能神經元的傳導[19-20]。二者充分表明,VLPO神經元能把GABA抑制性神經纖維投射到激發/維持覺醒的神經元中(包括食欲素能神經元),這一神經沖動的存在對于睡眠的啟動與維持起著至關重要的作用。
2.5視交叉上核神經元的傳入視交叉上核(suprachiasmatic nucleus,SCN),是根據環境明暗等信息,控制晝夜節律的關鍵部位。而睡眠-覺醒本身就具有晝夜節律性,所以假設食欲素能神經元能夠接受SCN信息傳入是合乎情理的。實際上,當把SCN敲除后,腦脊液中食欲素含量就難以維持生理意義的平衡穩態[21]。雖然從SCN直接投射到食欲素能神經元的纖維稀少,但是食欲素能神經元卻接收大量來自BST、室上核、背內側核的神經纖維投射[9-10],而后三者又都接收視交叉上核神經元的傳入信號[22]。說明食欲素能神經元通過這些核團間接受到視交叉上核生理節律的影響。另外,因下丘腦背內側核神經元(dorsomedial hypothalamus,DMH)可投射到與睡眠、覺醒相關的LC、VLPO,故DMH的損傷也可使睡眠-覺醒的晝夜交替節律發生紊亂[23]。考慮到食欲素能神經系統涉及攝食活動及攝食生物節律,因此,食欲素能神經元的晝夜節律可能還受其他因素的調控,如能量的平衡[24]。
3食欲素能神經元活動的影響因素
電生理研究發現了一些影響食欲素能神經元活動的神經遞質。(1)離子通道型谷氨酸受體的激活能促進食欲素能神經元的放電活動,而當體內存在谷氨酸受體的拮抗劑時,其放電活動減弱[19-20]。結果表明,谷氨酸可以通過谷氨酸受體,激活食欲素能神經元;(2)多巴胺、去甲腎上腺素和血清素5-羥色胺(5-HT)能分別通過作用腎上腺素-2受體和5-HT1A受體減小或抑制食欲素能神經元的活動[25]。值得注意的是,除激活腎上腺素-2受體外,多巴胺尚能作用多巴胺受體調節食欲素能神經元的活動。例如,多巴胺D2受體拮抗劑——依替必利,就能夠抵消多巴胺對食欲素能神經元棘突放電頻率和膜電位的影響[25];(3)有報道,在成年人中食欲素能神經元尚能表達甘氨酸受體,且甘氨酸的釋放直接或間接地抑制了食欲素能神經元的活動[26];(4)食欲素本身就能結合Ox2R興奮自身的活動[27],提示在食欲素能神經網絡內可能存在著一個正反饋環路,使食欲素能神經元的活動維持在一個較高、較長時間的水平。
不少研究也報道了其他激素或微環境代謝產物對食欲素能神經元活動的影響,包括促腎上腺皮質激素釋放激素[28],ATP[29],NPY[15],體內酸堿的平衡以及二氧化碳的水平[31]。因此,食欲素能神經元的活動受多種因素的調節,并且神經元能夠整合神經沖動的信息,維持機體穩定的晝夜節律,能量平衡以及警覺水平。
4食欲素能神經元的體液調節
機體的動機行為(如覓食)與自身覺醒的維持高度相關,食欲素能神經元也一度被認為是能量調節的感應器。電生理學的研究表明,增加細胞外血糖濃度,食欲素能神經元突觸膜就易發生超極化;反之,降低細胞外血糖濃度,則神經元突觸膜就易發生去極化[30]。食物中的氨基酸成分也被發現具有對食欲素能神經元興奮的作用,不過,這種作用仍是通過血糖濃度調節食欲素能神經元的電生理活動[31]。
此外,增加食欲的胃促生長激素能夠使食欲素能神經元放電頻率增加,突觸后膜去極化,從而激活食欲素能神經元的活動。相反,降低食欲的瘦素能降低食欲素能神經元的放電活動,使突觸后膜超極化[32]。然而,胰島素對此卻沒有直接的影響作用。
總之,食欲素能神經元是作為機體營養狀況的感應器來發揮作用的[6],且食欲素能神經系統可能在機體能量代謝穩態與覺醒狀態間充當著相互聯系的橋梁。
5小結
大量的研究已經證明,食欲素的生理功能已不單單只局限在調節攝食行為上,它對睡眠-覺醒的維持,自主神經功能的調節,參與獎賞系統的機制都有著極其重要的作用。食欲素能神經元聚集于LHA,這一解剖上的地處,使它與邊緣系統、腦干單胺能系統、膽堿能系統和能量穩態平衡等有著緊密的聯系。另外,下丘腦區的食欲素能神經元,本身就可以調節多種生理變化和行為來更好地適應環境[7]。例如,機體內血糖濃度氨基酸水平的變化,可引起攝食行為的改變,從而引起食欲素能神經元活動的變化。同時,這一系列的改變均會促進機體警覺,重新調整自主神經功能,來維持血壓、心率、體溫等的平衡。
隨著新的特定神經投射技術的產生和運用,我們斷定食欲素能神經元及分支能向不同的腦功能區域投射。學者仍需著手于食欲素能神經系統生理功能差別的研究,從而詳細地了解食欲素能神經分支的功能作用。
參考文獻:
[1] Chen Q,de Lecea L,Hu Z,et al.The hypocretin/orexin system:an increasingly important role in neuropsychiatry[J].Med Res Rev,2015,35(1):152-197.
[2]Konadhode RR,Pelluru D,Shiromani PJ.Neurons containing orexin or melanin concentrating hormone reciprocally regulate wake and sleep[J].Front Syst Neurosci,2015,8:244.
[3]Tupone D,Madden CJ,Cano G,et al.An orexinergic projection from perifornical hypothalamus to raphe pallidus increases rat brown adipose tissue thermogenesis[J].Neurosci,2011,31(44):15944-15955.
[4]Giardino WJ,de Lecea L.Hypocretin (orexin) neuromodulation of stress and reward pathways[J].Curr Opin Neurobiol,2014,29:103-108.
[5]Sakurai T.Roles of orexin and effects of orexin receptor antagonists[J].Nihon Rinsho,2015,73(6):1023-1030.
[6]Sakurai T,Moriguchi T,Furuya K,et al.Structure and function of human prepro-orexin gene[J].BiolChem,1999,274(25):17771-17776.
[7]Inutsuka A,Yamanaka A.The physiological role of orexin/hypocretin neurons in the regulation of sleep/wakefulness and neuroendocrine functions[J].Front Endocrinol,2013,4:18.
[8]Sch?ne C,Cao ZF,Apergis-Schoute J.Optogenetic probing of fast glutamatergic transmission from hypocretin/orexin to histamine neurons in situ[J].J Neurosci,2012,32(36):12437-12443.
[9]Sakurai T,Nagata R,Yamanaka A,et al.Input of orexin/hypocretin neurons revealed by a genetically encoded tracer in mice[J].Neuron,2005,46(2):297-308.
[10]Yoshida K,Mccormack S,Espana RA,et al.Afferents to the orexin neurons of the rat brain[J].Comp Neurol,2006,494(5):845-861.
[11]Zhou L,Yueh CY,Lam DD,et al.Glucokinase inhibitor glucosamine stimulates feeding and activates hypothalamic neuropeptide Y and orexin neurons[J].Behav Brain Res 2011,222(1):274-278.
[12]Sainsbury A,Shi YC,Zhang L,et al.Y4 receptors and pancreatic polypeptide regulate food intake via hypothalamic orexin and brain-derived neurotropic factor dependent pathways[J].Neuropeptides,2010,44(3):261-268.
[13]Li Y,Xu Y,van den Pol AN,et al.Reversed synaptic effects of hypocretin and NPY mediated by excitatory GABA-dependent synaptic activity in developing MCH neurons[J].J Neurophysiol,2013,109(6):1571-1578.
[14]de Zambotti M,Pizza F,Covassin N,et al.Facing emotions in narcolepsy with cataplexy:haemodynamic and behavioural responses during emotional stimulation[J].J Sleep Res,2014,23(4):432-440.
[15]Takakusaki K,Takahashi K,Saitoh K,et al.Orexinergic projections to the cat midbrain mediate alternation of emotional behavioural states from locomotion to cataplexy[J].Physiol,2005,568(Pt3):1003-1020.
[16]Kayaba Y,Nakamura A,Kasuya Y,et al.Attenuated defense response and low basal blood pres-sure in orexin knockout mice[J].Am J Physiol Regul Integr Comp Physiol,2003,285(3):581-593.
[17]Zhang W,Sakurai T,Fukuda Y,et al.Orexin neuronmediated skeletal muscle vasodilation and shift of baroreflex during defense response inmice[J].Am J Physiol Regul Integr Comp Physiol,2006,290(6):1654-1663.
[18]Benedetto L,Rodriguez-Servetti Z,Lagos P,et al.Microinjection of melanin concentrating hormone into the lateral preoptic area promotes non-REM sleep in the rat[J].Peptides,2013,39:11-15.
[19]Matsuki T,Nomiyama M,Takahira H,et al.Selective loss of GABA(B) receptors in orexin-producing neurons results in disrupted sleep/wakefulness architecture[J].Proc Natl Acad Sci,2009,106(11):4459-4464.
[20]Matsuki T,Takasu M,Hirose Y,et al.GABAA receptor-mediated input change on orexin neurons following sleep deprivation in mice[J].Neuroscience,2015,284:217-224.
[21]Deboer T,Overeem S,Visser NA,et al.Convergence of circadian and sleep regulatory mechanisms on hypocretin-1[J].Neuroscience,2004,129(3):727-732.
[22]Schwartz MD,Urbanski HF,Nunez AA,et al.Projections of the suprachiasmatic nucleus and ventral subparaventricular zone in the Nile grass rat (Arvicanthis niloticus)[J].Brain Res,2011,1367:146-161.
[23]Smarr BL,Morris E,de la Iglesia HO.The dorsomedial suprachiasmatic nucleus times circadian expression of Kiss1 and the luteinizing hormone surge[J].Endocrinology,2012,153(6):2839-2850.
[24]Mavanji V,Perez-Leighton CE,Kotz CM,et al.Promotion of Wakefulness and Energy Expenditure by Orexin-A in the Ventrolateral Preoptic Area[J].Sleep,2015,38(9):1361-1370.
[25]Landry JP,Hawkins C,Wiebe S,et al.Direct and indirect inhibition by catecholamines of hypocretin/orexin neurons[J].Neurosci,2005,25(1):173-183.
[26]Hondo M,Urutani N,Yamasaki M,et al.Orexin neurons receive glycinergic innervations[J].PLoS One,2011,6(9):e25076.
[27]Yamanaka A,Tabuchi S,Tsunematsu T,et al.Orexin directly excites orexin neurons through orexin 2 receptor[J].Neurosci,2010,30(38):12642-12652.
[28]Steiner MA,Sciarretta C,Brisbare-Roch C,et al.Examining the role of endogenous orexins in hypothalamus-pituitary-adrenal axis endocrine function using transient dual orexin receptor antagonism in the rat[J].Psychoneuroendocrinology,2013,38(4):560-571.
[29]Appelbaum L,Skariah G,Mourrain P.Comparative expression of p2x receptors and ecto-nucleoside triphosphate diphosphohydrolase 3 in hypocretin and sensory neurons in zebrafish[J].Brain Res,2007,11(4):66-75.
[30]Williams RH,Jensen LT,Verkhratsky A,et al.Control of hypothalamic orexin neurons by acid and CO2[J].Proc Natl Acad Sci USA,2007,104(25):10685-10690.
[31]Karnani MM,Apergis-Schoute J,Adamantidis A,et al.Activation of central orexin/hypocretin neurons by dietary amino acids[J].Neuron,2011,72(4):616-629.
[32]Karnani M M,Apergis-Schoute J,Adamantidis A.Activation of central orexin/hypocretin neurons by dietary amino acids[J].Neuron,2011,72(4):616-629.

The Neural Network of Orexin neurons and Their Physiological Functions
JIANG Lianxiang,DAI Zeping*
(Department of Anaesthesiology,Yijishan Hospital of Wannan Medical College,Wuhu 241000,China)
AbstractOrexins,a novel family of neuropeptides produced by the hypothalamus neurons,were initially recognized as regulators of feeding behavior,but they are mainly regarded as key modulators of the sleep/wakefulness cycle.Orexin neurons,in inspite of located in lateral hypothalamic area( LHA),project sparsely their axons throughout the brain and play key variously roles.Activity of orexin neurons are also regulated by peripheral metabolic cues,including ghrelin,leptin,and glucose concentration,except for glutamate,glycine,dopamine.These findings suggest that orexin neurons sense the outer and inner environment of the body and maintain the proper wakefulness level of animals for survival.This review describes the neuronal inputs and outputs of the orexin neurons,analysis factors that influence the activity of orexin neurons and discuss the various physiological roles of the orexin system,focusing on the regulation of sleep and wakefulness.
Key wordsorexin;sleep;nervous;orexin neurons
收稿日期2015-07-27
doi:10.3969/j.issn.1008-2344.2015.04.018
中圖分類號R338
文獻標識碼A
文章編號1008-2344(2015)04-0241-04
通訊作者戴澤平(1963—),男(漢),主任醫師,碩士生導師,研究方向:麻醉與腦.E-mail:zpdai@wnmc.edu.cn
基金項目安徽省教育廳重點項目(No.kj2013A254)