999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

葛根及葛根素腦保護作用的研究進展

2015-04-07 05:51:53魏述永
食品科學 2015年17期

魏述永

(西南大學榮昌校區動物醫學系,重慶 402460)

葛根及葛根素腦保護作用的研究進展

魏述永

(西南大學榮昌校區動物醫學系,重慶 402460)

葛根為我國傳統的藥食兩用植物,葛根素為其主要藥效成分之一。依據中醫藥理論,葛根具有解表退熱、生津止渴的功效。現代藥理學研究表明,葛根及葛根素均具有顯著的腦保護活性,對阿爾茨海默病、帕金森病及腦卒中等模型動物或細胞產生保護作用,其機制與調節GSK-3β/Nrf2、PI3K/Akt、cAMP/PKA等神經細胞凋亡信號轉導通路有關。提示葛根具備開發為抗神經系統疾病保健食品的潛在價值。

葛根;葛根素;腦保護;保健食品

葛根為我國傳統藥食兩用植物,采挖自豆科植物野葛(Pueraria lobata(Willd.)Ohwi(Fabaceae))的干燥根,產地遍布我國南北各地,現已人工栽培。依據傳統理論,葛根具有解表退熱、生津止渴之功效,其藥效成分主要為葛根素、大豆苷、大豆苷元等[1]。現代藥理學研究發現,葛根及葛根素對阿爾茨海默病(Alzheimer’s disease,AD)、帕金森病(Parkinson’s disease,PD)及腦卒中等動物及細胞模型具有顯著保護作用,給上述神經系統“疑難雜癥”的治療帶來了福音。近年來,葛根及葛根素的各種制劑在國內已經被廣泛應用于神經系統疾病的臨床治療,但由于臨床實驗設計及樣本的局限性,其療效仍存在爭議[2-6],而作為傳統的藥食兩用物品,葛根作為腦保護保健食材的開發尚未引起足夠重視。本文綜述了葛根及葛根素腦保護作用的研究進展,為相關保健食品的開發提供參考。

1 葛根的主要活性成分

葛根含有豐富的活性成分,主要包括異黃酮及其苷元、三萜類、香豆素類等,其中異黃酮及其苷元為主要活性成分,主要以葛根素、大豆苷、大豆苷元為主,因產地、品種、采收季節和生長年限不同含量各異[7];三萜類包括以葛根皂醇A、B、C命名的新型齊墩果烷型皂角精醇、大豆皂醇、槐二醇、大豆苷醇等;香豆素類主要包括6,7-二甲氧基香豆素及葛根香豆素[7-8]。另外,因為含有揮發油成分,葛根具有輕微的甜味及酒味,揮發油中棕櫚酸甲酯占42.2%,硬脂酸甲酯占5.2%,2-乙酸甲氧乙酯占4.8%,乙酰甲醇占4.5%,正丁酸占4.1%[9]。葛根中還含有大量的微量組分,包括氯化膽堿、乙酰膽堿、D-甘露醇、花生酸、棕櫚酸、二丙酮胺及右旋松醇等[10-12]。

葛根素屬異黃酮類化合物,自20世紀50年代被分離鑒定以來[1],其藥理活性已被廣泛研究。研究發現,葛根及葛根素具有腦保護、心血管保護、降糖、抗炎、抗骨質疏松、保肝等廣泛的藥理活性[13-14],其中,其腦保護機制與對抗AD、PD及腦卒中所引起的神經細胞凋亡有關。鑒于上述疾病臨床治療較為困難,故對它們的預防就顯得尤為重要,然而其保健食品的開發在國內目前尚屬空白。葛根作為傳統的藥食兩用食材,具有顯著的腦保護活性,因此其在腦保健食品開發上具有潛在價值。

2 葛根及葛根素的腦保護活性

2.1抗AD作用

AD是一種與年齡相關的神經退行性疾病,海馬區神經元線粒體損傷及氧化應激所引起的三磷酸腺苷(adenosine triphosphate,ATP)合成障礙和細胞凋亡在AD的早期病變中起到重要作用[15-16],以認知和記憶功能不斷衰退為特征,其治療主要以保護神經細胞緩和病情為主[17-18]。

2.1.1動物實驗

研究發現,葛根提取物對D-半乳糖誘導的AD小鼠學習記憶能力障礙具有改善作用,可顯著提高模型動物自發性活動及學習、記憶能力,其機制與提高腦組織超氧化物歧化酶(superoxide dismutase,SOD)活性而減輕氧化應激損傷等有關[19]。另外,葛根素可改善去勢雌性小鼠的學習與記憶能力,其機制為改善谷氨酸/γ-氨基丁酸(glutamic acid/gamma amino acid butyric acid,Glu/GABA)比率[20],改善海馬神經元突觸重構、增加突觸后蛋白(postsynaptic protein,PSD)-95表達及天冬氨酸受體亞單位(nmda receptor 2b,NR2B)的磷酸化[21],而在全腦缺血-再灌注損傷大鼠模型中,葛根素改善學習記憶力的作用與上調B淋巴細胞瘤(B-cell lymphoma,Bcl)-2基因從而抑制細胞凋亡有關[22]。

2.1.2細胞實驗

2.1.2.1β-淀粉樣蛋白誘導的細胞凋亡

β-淀粉樣蛋白(amyloid pepitide,Aβ)在AD的發病機制中起到重要作用,其沉積可導致神經元死亡[23]。葛根提取物及葛根素可通過降低凋亡蛋白酶(caspase)-9的活性、激活絲氨酸/蘇氨酸激酶(serine/ threonine kinase,Akt)及增加Bcl-x1/Bcl-2相關死亡啟動子(Bcl-x1/Bcl-2 related death promoter,Bad)的磷酸化而減少Aβ誘導的大鼠海馬神經元的凋亡[24],也可以通過清除自由基及抑制脂質過氧化而減少原代培養大鼠海馬神經元細胞的氧化應激,其機制為誘導糖原合成酶激酶-3β(GSK-3β)9位絲氨酸的磷酸化而抑制GSK-3β/ NF-E2相關因子2(NF-E2-related factor 2,Nrf2)信號通路[25],該作用可被GSK-3β抑制劑氯化鋰阻斷。進一步研究表明,葛根素可激活蛋白激酶B(protein kinase B,PKB)/Akt,其為GSK-3β上游的重要激酶,從而引起GSK-3β的抑制作用[26]。通過增加p-Akt、Bcl-2和p-Bad的表達,降低Bcl-2相關X蛋白(Bcl-2 associated X protein,Bax)表達及細胞色素C的釋放,葛根素對Aβ誘導的PC12細胞凋亡產生保護作用,該作用可被磷脂酰肌醇3激酶(phosphatidyl inositol 3-kinase,PI3K)磷酸化作用抑制劑渥曼青霉素阻斷,提示其機制與PI3K信號通路有關[27]。

2.1.2.2其他細胞模型

在過氧化氫(H2O2)誘導的PC12細胞模型中,葛根素可激活PI3K/Akt信號通路[28]。在活性氧(reactive oxygen species,ROS)超表達的線粒體轉基因神經元雜交細胞模型中,葛根素可通過抑制Caspase-3、p38及Jun N末端激酶(jun N-terminal kinase,JNK)的活性并降低Bax/Bcl-2比率而減少線粒體氧化應激引起的細胞凋亡[29]。在原代培養海馬神經元細胞氧糖剝奪模型中,葛根素可降低細胞凋亡及壞死數量,其機制為減少谷氨酰胺釋放、細胞內Ca2+濃度及NO合成引起的氧化應激[30]。進一步研究證實,在原代培養大鼠海馬神經元細胞中,葛根素對細胞內基礎Ca2+濃度沒有影響,但可通過雌激素受體增強KCl誘發的Ca2+釋放,雌激素受體拮抗劑ICI 182780、他莫西芬,蛋白激酶A(proteinkinase A,PKA)拮抗劑H89等均可阻斷該作用,提示其與環磷酸腺苷(cyclic adenosine monophosphate,cAMP)/PKA信號通路有關[31]。

2.2抗PD作用

PD以黑質多巴胺能神經元減少并退化成非多巴胺能神經元為特征[32],細胞凋亡是其重要的病理過程[33-34]。

2.2.1動物實驗

在去勢雌性大鼠黑質神經元中,葛根提取物及葛根素可提高細胞酪氨酸羥化酶(tyrosine hydroxylase,TH)陽性率并降低凋亡細胞數量,提示其保護作用與抗細胞凋亡有關[35]。在6-羥多巴胺(6-hydroxy dopamine,6-OHDA)誘導的大鼠黑質損傷模型中,腹腔注射葛根素(0.12 mg/(kg·d))10 d后可降低Bax水平,恢復多巴胺及其代謝物含量,提高細胞TH陽性率及神經膠質細胞源性神經營養因子(neurotrophic factor,NTF)水平,因此推測其神經細胞保護作用與抗凋亡及提高NTF水平有關[36]。

2.2.2細胞實驗

在6-OHDA誘導的神經生長因子差異化的嗜鉻細胞瘤PC12細胞模型中,葛根提取物及葛根素可抑制Caspase-8并部分抑制Caspase-3活性從而抑制細胞凋亡[37]。葛根素也可保護1-甲基-4-苯基碘化吡啶(1-methyl-4-phenyl iodide pyridine,MPP+)誘導的PC12細胞的凋亡,其機制為降低絲裂原活化蛋白激酶激酶(mitogen-activated protein kinase kinase,MKK)7、JNK、c-Jun的磷酸化及細胞色素C的水平進而抑制JNK信號通路[38]及線粒體依賴性Caspase級聯反應[39]。在MPP+誘導的人神經母細胞瘤SH-SY5Y株凋亡模型中,葛根素可激活PI3K/Akt信號通路、抑制細胞核p53蓄積及伴隨的Caspase-3依賴性細胞凋亡[40],減少泛素結合蛋白的蓄積、增加Bcl-2/Bax比率以調節泛素蛋白酶系統[41]。

2.3抗腦缺血再灌注損傷

腦缺血后常引起嚴重的組織損傷,其病理過程與興奮性毒性、炎癥反應、自由基釋放等因素密切相關[42],再灌注后,隨著ROS及NO的釋放,腦組織損傷加重[43],因此,減少興奮性氨基酸、炎癥反應及自由基釋放引起的氧化應激反應可對腦組織產生保護作用[44]。葛根及葛根素對缺血再灌注損傷的保護作用主要體現在上述三方面。

2.3.1減輕興奮性毒性

葛根及葛根素對大腦中動脈栓塞模型(middle cerebral artery occlusion,MCAO)大鼠缺血再灌注損傷具有保護作用,其機制與減輕Glu過度釋放引起的興奮性毒性有關。造模前腹腔注射葛根素(100 mg/kg),缺血60 min后再灌注24 h,可降低紋狀體Glu/GABA比率,并降低Glu誘導的海馬神經元細胞的凋亡和壞死[45]。

2.3.2抗炎

大腦中動脈栓塞前10 min,腹腔注射葛根素(50 mg/kg)可降低缺血組織梗死區面積,缺氧誘導因子(hypoxia inducible factor,HIF)-1α、腫瘤壞死因子(tumor necrosis factor,TNF)-α表達,并抑制誘導型一氧化氮合酶(inducible nitric oxide synthases,iNOS)、中性粒細胞及Caspase-3活性,從而減輕炎癥反應及細胞凋亡[46-47],也可通過降低MCAO大鼠腦組織白細胞介素(interleukin,IL)-1β水平而產生抗炎作用[48]。

2.3.3抗氧化應激

葛根提取物及葛根素可降低MCAO大鼠缺血組織丙二醛(malonaldehyde,MDA)、NO含量,增加超氧化物歧化酶(superoxide dismutase,SOD)[48]、促紅細胞生成素(erythropoietin,EPO)[49]活性及突觸素水平[48],改善局灶性腦缺血再灌注損傷大鼠熱休克蛋白(heat shock protein,HSP)70含量并降低凋亡相關因子(factor associated suicide,Fas)水平[50]。葛根素也可以減輕新西蘭A大白兔[51]和大鼠[6]短暫性脊髓缺血損傷,其機制可能與增加氧硫還原蛋白轉錄及抑制凋亡有關。

2.4其他腦保護作用

葛根素對Glu、天冬氨酸及紅藻氨酸誘導的神經損傷具有保護作用[52],可降低酸中毒引起的海馬神經元酸敏感離子通道電流[53],減輕背根神經節P2X3受體介導的偏頭痛[54],抑制Ca2+內流及周期蛋白依賴性激酶(cyclin dependent kinase,Cdk)5活性而保護Glu誘導的神經絲軸突轉運損害[55],通過糖基化修飾作用抑制脂多糖(lipopolysaccharide,LPS)誘導的小膠質細胞iNOS及伴隨的NO、ROS表達[56],并具有促進神經生長作用[57]。

3 葛根及葛根素的毒副作用

葛根在我國食用的歷史悠久,并未發現其嚴重的不良反應,但隨著葛根素特別是其注射劑在臨床上的廣泛使用,其引起的發熱、過敏性休克、溶血、肝腎損害等不良反應日益引起廣泛關注,也極大制約了該制劑的臨床價值[58],而將葛根開發為腦保護保健食品,在有效利用其藥理活性的同時,可以避免葛根素制劑的各種不良反應,可謂一舉兩得。

3.1對實驗動物的毒性作用

動物實驗表明,葛根的毒副作用較低。葛根醇提物5 g/(kg·d)(相當于葛根素500 mg/(kg·d))灌胃大鼠21 d,與正常對照組相比,肝、腎、胰腺及脾臟組織未見病變,肌酐、肌酐激酶、丙氨酸氨基轉移酶(alanine aminotransferase,ALT)、天冬氨酸氨基轉移酶(aspartic transaminase,AST)及γ-谷氨酰轉移酶等血清生化指標未見異常[59]。葛根總黃酮肌內注射對大鼠的半數致死量(median lethal dose,LD50)為5.97 g/kg,葛根素靜脈注射對小鼠的LD50為700~800 mg/kg[60]。大鼠肌內或靜脈注射葛根素50 mg/(kg·d)持續50 d及犬肌內或靜脈注射葛根素10 mg/(kg·d)持續30 d未引起重要組織器官形態及功能改變[5]。

3.2臨床治療中的毒副作用

口服500 mg葛根提取物(含葛根素19%,大豆苷4%)每天3次持續7 d,在治療期間及其后4周內肝功能、血液學及尿液分析等生命體征無顯著變化[61]。另有報道顯示,持續給予100名患者葛根及丹參水提物(7∶3,m/m)3 g/d 24周,日常血液學及生化檢驗未見顯著影響,8名患者(其中6名為安慰劑組,2名為治療組)出現胸痛、坐骨神經痛、胃腸道出血等副作用[62]。在臨床治療中,葛根素注射劑可能出現發熱、頭痛、頭暈、過敏性休克、皮疹、咽喉腫痛、溶血性貧血、肝腎損傷等副作用,其毒理學機制研究尚待深入進行[58]。

4 葛根保健食品的開發現狀

日本較早地將葛根的活性成分葛根黃素、葛根黃苷等類黃酮物質用作治療心血管病的藥物及加工為保健食品,如葛根口服液、葛根罐頭、葛根飲料等,以滿足特殊人群的需要,產品十分暢銷,幾乎成為老人和產婦必備的食品[63]。美國在葛根素的提取、藥效方面研究較多,尤其注重葛根黃酮的抗氧化性和雌激素效應的研究[64],致力于開發出抗衰老、調節女性更年期不適癥的保健食品,生產出葛根與咖啡、蘆筍、蘆薈配制而成的飲料,并有葛根凍罐頭、葛根混合晶、葛根口服液、葛粉紅腸等新產品,深受消費者喜愛[63]。

雖然我國為葛根資源產地,但大多數地區對于葛根的生產加工仍處于較粗放狀態,如簡單加工成葛根粉、葛根粒等,經濟效益較低。近10a來,隨著人們對保健食品的日益重視,國內葛根保健食品的開發也得以較快發展,目前已經研制出防治高血壓、高血脂、冠心病、糖尿病等的葛根變性淀粉、葛根掛面、葛根果晶、葛根軟糖、葛根飲料、葛根低聚糖、葛根麥芽糊精、葛奶、葛根保健糊等初級和深加工產品[63],但尚少見葛根腦保健食品的相關報道。

5 結 語

葛根用于卒中等腦部疾病的治療在我國已有1 000多年的歷史,如唐代《千金方》中所載“獨活湯”用于治療卒中、痹癥。現代藥理學研究也表明,葛根及葛根素具有顯著的神經保護活性,其機制與調節PKB/Akt、GSK-3β/Nrf2[25-26]、PI3K/Akt[27-28,40]、JNK[29,38]、cAMP/PKA[31]等細胞凋亡信號轉導通路有關。鑒于腦部疾病如AD、PD、卒中等治療難度極大、療效欠佳,加強疾病預防就顯得尤為重要,因而相關保健食品的開發前景巨大。

雖然目前葛根保健食品的種類眾多,但尚少見腦保護相關的保健食品,且葛根保健食品的開發仍存在諸多問題,如:1)食品的保健功能尚無客觀、準確的評價標準,相關產品的質量良莠不齊,影響了其市場認可度。2)產品的保健功能界定不清或盲目擴大,缺乏針對各種疾病特點的特色產品的開發。3)產品生產中,缺乏針對各種成分特點的工藝設計,缺乏有效成分含量的嚴格標準。因此葛根保健食品特別是腦保健食品的開發特別是質量標準的制定與完善仍需要深入研究。

[1] SHIBATA S, MURAKAMI T, NISHKAWA Y, et al. The constituents of Pueraria root[J]. Chemical and Pharmaceutical Bulletin, 1959, 79∶ 134.

[2] TAN Yan, LIU Ming, WU Bo. Puerarin for acute ischaemic stroke[DB/OL]. Cochrane Database of Systematic Reviews, 2008(1)∶CD004955. doi∶ 10.1002/14651858.CD004955.pub2.

[3] PRASAIN J K, CARLSON S H, WYSS J M. Flavonoids and agerelated disease∶ risk, benefits and critical windows[J]. Maturitas, 2010, 66(2)∶ 163-171.

[4] SONG Juxian, SZE S C W, NG T B, et al. Anti-Parkinsonian drug discovery from herbal medicines∶ what have we got from neurotoxic models?[J]. Journal of Ethnopharmacology, 2012, 139(3)∶ 698-711.

[5] WONG K H, LI G Q, LI K M, et al. Kudzu root∶ traditional uses and potential medicinal benefits in diabetes and cardiovascular diseases[J]. Journal of Ethnopharmacology, 2011, 134(3)∶ 584-607.

[6] TIAN Feng, XU Lihui, ZHAO Wei, et al. The optimal therapeutic timing and mechanism of puerarin treatment of spinal cord ischemiareperfusion injury in rats[J]. Journal of Ethnopharmacology, 2011, 134(3)∶ 892-896.

[7] PRICE K R, FENWICK G R. Naturally occurring oestrogens in foods-a review[J]. Food Additive s and Contaminants, 1985, 2(2)∶ 73-106.

[8] ZHOU Yanxi, ZHANG Hong, PENG Cheng. Puerarin∶ a review of pharmacological effects[J]. Phytotherapy Research, 2014, 28(7)∶ 961-975.

[9] ZHANG Zhen, LAM T N, ZUO Zhong. Radix Puerariae∶ an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use[J]. The Journal of Clinical Pharmacology, 2013, 53(8)∶787-811.

[10] LIN C C, WU C I, SHEU S J. Determination of 12 pueraria components by high-performance liquid chromatography-mass spectrometry[J]. Journal of Separation Science, 2005, 28(14)∶ 1785-1795.

[11] WANG Y Z, FENG W S, SHI R B, et al. A new chemical component of Pueraria lobata (Willd.) Ohwi[J]. Acta Pharmaceutical Sinica, 2007, 42(9)∶ 964-967.

[12] NAKAMOTO H, MIYAMURA S, INADA K, et al. The study of the aqueous extract of Puerariae radix. I. The preparation and the components of the active extract[J]. Yakugaku Zasshi, 1975, 95(9)∶1123-1127.

[13] MAJI A K, PANDIT S, BANERJI P, et al. Pueraria tuberosa∶ a review on its phytochemical and therapeutic potential[J]. Natural Products Research, 2014, 28(23)∶ 2111-2127.

[14] WEI Shuyong, CHEN Yi, XU Xiaoyu. Progress on the pharmacological research of puerarin∶ a review[J]. Chinese Journal of Natural Medicine, 2014, 12(6)∶ 407-414.

[15] HAUPTMANN S, KEIL U, SCHERPING I, et al. Mitochondrial dysfunction in sporadic and genetic Alzheimer’s disease[J]. Experimental Gerontology, 2006, 41(7)∶ 668-673.

[16] MOREIRA P I, CARVALHO C, ZHU X, et al. Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology[J]. Biochimica et Biophysica Acta, 2010, 1802(1)∶ 2-10.

[17] MOHAJERI M H, LEUBA G. Prevention of age-associated dementia[J]. Brain Research Bulletin, 2009, 80(4/5)∶ 315-325.

[18] SAVIOZ A, LEUBA G, VALLET P G, et al. Contribution of neural networks to Alzheimer disease’s progression[J]. Brain Research Bulletin, 2009, 80(4/5)∶ 309-314.

[19] XU Xiaohong, ZHAO Tieqiao. Effects of puerarin on D-galactoseinduced memory deficits in mice[J]. Acta Pharmacologica Sinica, 2002, 23(7)∶ 587-590.

[20] XU Xiaohong, HU Yanyue, RUAN Qin. Effects of puerarin on learning-memory and amino acid transmitters of brain in ovariectomized mice[J]. Planta Medica, 2004, 70(7)∶ 627-631.

[21] XU Xiaohong, ZHANG Zigui. Effects of puerarin on synaptic structural modification in hippocampus of ovariectomized mice[J]. Planta Medica, 2007, 73(10)∶ 1047-1053.

[22] WU Haiqin, GUO Hena, WANG Huqing, et al. Protective effects and mechanism of puerarin on learning-memory disorder after global cerebral ischemia-reperfusion injury in rats[J]. Chinese Journal of Integrative Medicine, 2009, 15(1)∶ 54-59.

[23] PARK H J, KIM S S, KANG S, et al. Intracellular Abeta and C99 aggregates induce mitochondria-dependent cell death in human neuroglioma H4 cells through recruitment of the 20S proteasome subunits[J]. Brain Ressearch, 2009, 1273∶ 1-8.

[24] LI Jiaming, WANG Gang, LIU Jicheng, et al. Puerarin attenuates amyloid-beta-induced cognitive impairment through suppression of apoptosis in rat hippocampus in vivo[J]. European Journal of Pharmacology, 2010, 649(1/3)∶ 195-201.

[25] ZOU Y, HONG B, FAN L, et al. Protective effect of puerarin against beta-amyloid-induced oxidative stress in neuronal cultures from rat hippocampus∶ involvement of the GSK-3β/Nrf2 signaling pathway[J]. Free Radical Research, 2013, 47(1)∶ 55-63.

[26] LIN F, XIE B, CAI F, et al. Protective effect of puerarin on β-amyloid-induced neurotoxicity in rat hippocampal neurons[J]. Arzneimittelforschung, 2012, 62(4)∶ 187-193.

[27] XING Guihua, DONG Miaoxian, LI Xiaoming, et al. Neuroprotective effects of puerarin against beta-amyloid-induced neurotoxicity in PC12cells via a PI3K-dependent signaling pathway[J]. Brain Research Bulletin, 2011, 85(3/4)∶ 212-218.

[28] ZHANG Qin, HUANG Weidong, L? Xueying, et al. Puerarin protects differentiated PC12 cells from H2O2-induced apoptosis through the PI3K/Akt signalling pathway[J]. Cell Biology International, 2012, 36(5)∶ 419-426.

[29] ZHANG Haiying, LIU Yiheng, LAO Meili, et al. Puerarin protects Alzheimer’s disease neuronal cybrids from oxidant-stress induced apoptosis by inhibiting pro-death signaling pathways[J]. Experimental Gerontology, 2011, 46(1)∶ 30-37.

[30] XU Xiaohong, ZHENG Xiaoxiang. Potential involvement of calcium and nitric oxide in protective effects of puerarin on oxygenglucose deprivation in cultured hippocampal neurons[J]. Journal of Ethnopharmacology, 2007, 113(3)∶ 421-426.

[31] LIN Fankai, XIN Yan, WANG Jianghua, et al. Puerarin facilitates Ca2+-induced Ca2+release triggered by KCl-depolarization in primary cultured rat hippocampal neurons[J]. European Journal of Pharmacology, 2007, 570(1/3)∶ 43-49.

[32] LOU J S. Physical and mental fatigue in Parkinson’s disease∶epidemiology, pathophysiology and treatment[J]. Drugs Aging, 2009, 26(3)∶ 195-208.

[33] MEISSNER W G, FRASIER M, GASSER T, et al. Priorities in Parkinson’s disease research[J]. Natural Reviews, Drug Discovery, 2011, 10(5)∶ 377-393.

[34] LI X L, CHENG W D, LI J, et al. Protective effect of estrogen on apoptosis in a cell culture model of Parkinson’s disease[J]. Clinical and Investigative Medicine, 2008, 31(5)∶ E258-264.

[35] LI Xueli, SUN Shenggang, TONG Etang. Experimental study on the protective effect of puerarin to Parkinson disease[J]. Journal of Huazhong University of Science and Technology Medical Science, 2003, 23(2)∶ 148-150.

[36] ZHU Guoqi, WANG Xuncui, CHEN Yuefa, et al. Puerarin protects dopaminergic neurons against 6-hydroxydopamine neurotoxicity via inhibiting apoptosis and upregulating glial cell line-derived neurotrophic factor in a rat model of Parkinson’s disease[J]. Planta Medica, 2010, 76(16)∶ 1820-1826.

[37] LIN C, LIN R D, CHEN S T, et al. Neurocytoprotective effects of the bioactive constituents of Pueraria thomsonii in 6-hydroxydopamine (6-OHDA)-treated nerve growth factor (NGF)-differentiated PC12 cells[J]. Phytochemistry, 2010, 71(17/18)∶ 2147-2156.

[38] WANG Gang, LI Zhou, ZHANG Yingbo, et al. Implication of the c-Jun-NH2-terminal kinase pathway in the neuroprotective effect of puerarin against 1-methyl-4-phenylpyridinium (MPP+)-induced apoptosis in PC-12 cells[J]. Neuroscience Letters, 2011, 487(1)∶ 88-93.

[39] JIANG Bo, BAO Yongming, LI Zhigang, et al. Protection by puerarin against MPP+-induced neurotoxicity in PC12 cells mediated by inhibiting mitochondrial dysfunction and caspase-3-like activation[J]. Neuroscience Research, 2005, 53(2)∶ 183-188.

[40] ZHU Guoqi, WANG Xuncui, WU Shengbing, et al. Involvement of activation of PI3K/Akt pathway in the protective effects of puerarin against death[J]. Neurochemistry International, 2012, 60(4)∶ 400-408.

[41] CHENG Yuefa, ZHU Guoqi, WANG Mei, et al. Involvement of ubiquitin proteasome system in protective mechanisms of Puerarin to MPP+-elicited apoptosis[J]. Neuroscience Research, 2009, 63(1)∶52-58.

[42] KURODA S, SIESJ? B K. Reperfusion damage following focal ischemia∶ pathophysiology and therapeutic windows[J]. Clinical Neuroscience, 1997, 4(4)∶199-212.

[43] IADECOLA C, ZHANG F, CASEY R, et al. Inducible nitric oxide synthase gene expression in vascular cells after transient focal cerebral ischemia[J]. Stroke, 1996, 27(8)∶1373-1380.

[44] HSIAO G, LEE J J, CHEN Y C, et al. Neuroprotective effects of PMC, a potent alpha-tocopherol derivative, in brain ischemia-reperfusion∶reduced neutrophil activation and anti-oxidant actions[J]. Biochemical Pharmacology, 2007, 73(5)∶ 682-693.

[45] XU Xiaohong, ZHENG Xiaoxiang, ZHOU Qiong, et al. Inhibition of excitatory amino acid efflux contributes to protective effects of puerarin against cerebral ischemia in rats[J]. Biomedical and Environmental Sciences, 2007, 20(4)∶ 336-342.

[46] CHANG Yi, HSIEH C Y, PENG Zida, et al. Neuroprotective mechanisms of puerarin in middle cerebral artery occlusion-induced brain infarction in rats[J]. Journal of Biomedical Science, 2009, 16(1)∶9-22.

[47] XU Xiaohong, ZHANG Shaomin, ZHANG Lei, et al. The Neuroprotection of puerarin against cerebral ischemia is associated with the prevention of apoptosis in rats[J]. Planta Medica, 2005, 71(7)∶585-591.

[48] WAN Haitong, ZHU Huiyuan, TIAN Mei, et al. Protective effect of chuanxiongzine-puerarin in a rat model of transient middle cerebral artery occlusion-induced focal cerebral ischemia[J]. Nuclear Medicine Communications, 2008, 29(12)∶ 1113-1122.

[49] GAO Li, JI Xunming, SONG Juexian, et al. Puerarin protects against ischemic brain injury in a rat model of transient focal ischemia[J]. Neurological Research, 2009, 31(4)∶ 402-406.

[50] PAN Hongping, LI Gao. Protecting mechanism of puerarin on the brain neurocyte of rat in acute local ischemia brain injury and local cerebral ischemia-reperfusion injury[J]. Yakugaku Zasshi, 2008, 128(11)∶ 1689-1698.

[51] SANG Hanfei, MEI Qibing, XU Lixian, et al. Effect of puerarin on neural function and histopathological damages after transient spinal cord ischemia in rabbits[J]. Chinese Journal of Traumatology, 2004, 7(3)∶ 143-147.

[52] DONG Liping, WANG Tianyou. Effects of puerarin against glutamate excitotoxicity on cultured mouse cerebral cortical neurons[J]. Acta Pharmacologica Sinica, 1998, 19(4)∶ 339-342.

[53] GU Ling, YANG Yi, SUN Yiguo, et al. Puerarin inhibits acid-sensing ion channels and protects against neuron death induced by acidosis[J]. Planta Medica, 2010, 76(6)∶ 583-588.

[54] XU Changshui, XU Wenyuan, XU Hong, et al. Role of puerarin in the signalling of neuropathic pain mediated by P2X3 receptor of dorsal root ganglion neurons[J]. Brain Research Bulletin, 2012, 87(1)∶ 37-43.

[55] ZHOU Jie, WANG Hongxing, XIONG Yufang, et al. Puerarin attenuates glutamate-induced neurofilament axonal transport impairment[J]. Journal of Ethnopharmacology, 2010, 132(1)∶ 150-156.

[56] ZHENG Gaoming, YU Chao, YANG Zhu. Puerarin suppresses production of nitric oxide and inducible nitric oxide synthase in lipopolysaccharide-induced N9 microglial cells through regulating MAPK phosphorylation, O-GlcNAcylation and NF-κB translocation[J]. International Journal of Oncology, 2012, 40(5)∶1610-1618.

[57] HSIANG S W, LEE H C, TSAI F J, et al. Puerarin accelerates peripheral nerve regeneration[J]. American Journal of Chinese Medicine, 2011, 39(6)∶ 1207-1217.

[58] 許麗佳, 劉婧, 鄒亮. 葛根素注射劑的安全性研究進展[J]. 成都大學學報∶ 自然科學版, 2014, 33(3)∶ 208-210.

[59] BEBREVSKA L, FOUBERT K, HERMANS N, et al. in vivo antioxidative activity of a quantified Pueraria lobata root extract[J]. Journal of Ethnopharmacology, 2010, 127(1)∶ 112-117.

[60] 王慶端, 江金花, 孫文欣, 等. 葛根總黃酮的急性毒性及長期毒性實驗[J]. 河南醫科大學學報, 1999, 34(2)∶ 48-50.

[61] LUKAS S E, PENETAR D, BERKO J, et al. An extract of the Chinese herbal root kudzu reduces alcohol drinking by heavy drinkers in a naturalistic setting[J]. Alcoholism Clinical and Experimental Research, 2005, 29(5)∶756-762.

[62] TAM W Y, CHOOK P, QIAO M, et al. The efficacy and tolerability of adjunctive alternative herbal medicine (Salvia miltiorrhiza and Pueraria lobata) on vascular function and structure in coronary patients[J]. The Journal of Alternative and Complementary Medicine, 2009, 15(4)∶ 415-421.

[63] 唐春紅, 陳琪. 國內外葛根營養保健功能的研究與開發利用[J]. 中國食品添加劑, 2002(6)∶ 56-58.

[64] BOUE S M, WIESE T E, NEHLS S. Evaluation of the estrogenic effects of legume extracts containing phytoestrogens[J]. Journal of Agricultural and Food Chemistry, 2003, 51(8)∶ 2193-2199.

Progress in Cerebral Protection of Pueraria lobata (Willd.) Ohwi (Fabaceae) and Puerarin

WEI Shuyong
(
Department of Veterinary Medicine, Rongchang Campus, Southwest University, Chongqing 402460, China)

Pueraria lobata(Willd.) Ohwi (Fabaceae), a traditional edible and medicinal plant in China, is used in in traditional Chinese medicine. Puerarin is one of its most important and effective components. According to the traditional Chinese medicinal theory, the roots ofPueraria lobata(Willd.) Ohwi (Fabaceae) have many functions such as relieving exterior syndrome, reducing fervescence, promoting the secretion of saliva or body fluid, and quenching thirst. Modern pharmacological research suggest that bothPueraria lobata(Willd.) Ohwi (Fabaceae) and puerarin exert cerebral protections in animal or cell models of Alzheimer’s disease, Parkinson’s disease and stroke, and the mechanisms involved may be associated with regulating the GSK-3β/Nrf2, PI3K/Akt and cAMP/PKA apoptosis signal pathways. These results indicate thatPueraria lobata(Willd.) Ohwi (Fabaceae) has the potential to be developed into health foods against nervous system diseases.

Pueraria lobata(Willd.) Ohwi (Fabaceae); puerarin; cerebral protection; health food

R285.5

1002-6630(2015)17-0259-05

10.7506/spkx1002-6630-201517048

2014-11-22

國家自然科學基金青年科學基金項目(31402237);重慶市基礎與前沿研究計劃項目(cstc2014jcyjA80023);中央高校基本科研業務費專項資金項目(XDJK2014C058)

魏述永(1980—),男,講師,博士,研究方向為中藥藥理與新藥研發。E-mail:shuyongwei013@163.com

主站蜘蛛池模板: 性色一区| 久久成人国产精品免费软件 | 亚洲热线99精品视频| 色偷偷一区| 在线人成精品免费视频| 日本91在线| 亚洲综合色吧| 国产成人精品一区二区三区| 精品中文字幕一区在线| 91在线中文| 18黑白丝水手服自慰喷水网站| 无码人妻热线精品视频| 亚洲精品片911| 日韩欧美91| 国产91精品久久| 在线观看国产网址你懂的| 精品久久久无码专区中文字幕| 久久精品丝袜高跟鞋| 亚洲国产成人超福利久久精品| 日本免费福利视频| 亚洲高清资源| 亚洲男人的天堂网| 免费在线色| 一级香蕉视频在线观看| 亚洲天堂2014| 无码精油按摩潮喷在线播放| 国产免费羞羞视频| 久久动漫精品| 四虎国产精品永久一区| 四虎永久免费网站| 国产欧美精品午夜在线播放| 国产欧美在线视频免费| 国产福利在线免费| 天堂在线www网亚洲| 亚洲国产精品日韩av专区| 在线无码九区| 伊人色综合久久天天| 91欧美在线| 精品国产免费第一区二区三区日韩| 成AV人片一区二区三区久久| a毛片基地免费大全| 亚洲成人在线网| 四虎永久在线| 久久精品嫩草研究院| 欧美日韩国产在线播放| 特级精品毛片免费观看| 91av成人日本不卡三区| 国产一区二区三区在线精品专区| 亚洲无限乱码一二三四区| 免费A级毛片无码免费视频| 国产美女丝袜高潮| 国产福利在线免费观看| 97国产精品视频自在拍| 伊在人亞洲香蕉精品區| аⅴ资源中文在线天堂| 亚洲视频免费在线| 婷婷开心中文字幕| 国内精品久久久久久久久久影视 | 欧美日本在线一区二区三区| 不卡视频国产| 欧美一区二区三区国产精品| 国产美女久久久久不卡| 亚洲国产成人精品无码区性色| 亚洲天堂网2014| 直接黄91麻豆网站| 日韩精品免费在线视频| 亚洲AⅤ无码日韩AV无码网站| 国产传媒一区二区三区四区五区| 影音先锋亚洲无码| 男人的天堂久久精品激情| 欧美第一页在线| 思思99热精品在线| 久热精品免费| 精品小视频在线观看| 亚洲人成网站18禁动漫无码 | 亚洲精品在线观看91| 内射人妻无码色AV天堂| 91国内在线视频| 国产人前露出系列视频| 久久香蕉国产线看观看式| 69国产精品视频免费| 欧美精品亚洲精品日韩专区|